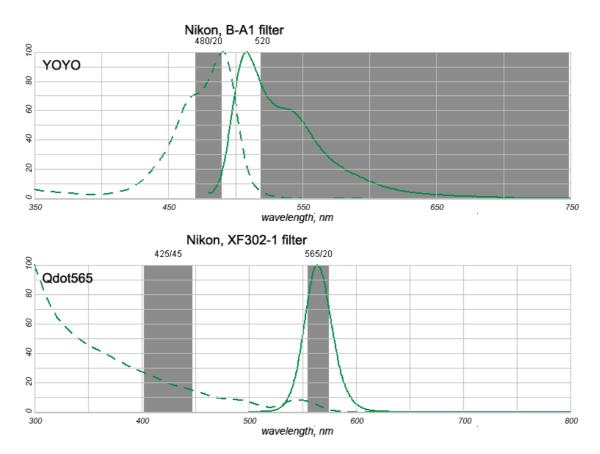
Supporting Information for:


Quantum Dot Probes for Observation of Single Molecule DNA and a Synthetic Polyelectrolyte Higher-Order Structure

Ning Chen, ^{1,2} Anatoly A. Zinchenko, *.^{1,2} Yuka Yamazaki, ¹ Yuko Yoshikawa, ³ Shizuaki

Murata, ¹ Kenichi Yoshikawa^{2,4}

¹Graduate School of Environmental Studies, Nagoya University, Furou-cho, Nagoya 464-8601 Japan, ² Spatio-Temporal Order Project, ICORP, JST, Tokyo, Japan, ³Faculty of Education for Future Generations, International Pacific University, Okayama 709-0863 Japan, ⁴Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502 Japans

Supplementary data for Figure 3. Fluorescence dyes and fluorescence filters.

Figure 1. Absorbance (dashed line) and fluorescence (solid line) spectra of YOYO and Qdot 565 fluorescence dyes and excitation/emission bandpass characteristics of B-A1 and XF302-1 filters (left gray bandpass – excitation, right bandpass – emission). Using YOYO specific filter (Nikon B-1A) strong fluorescence of YOYO dye together with a low signal from Qdot is observed. When Qdot 565-specific filter (Nikon XF302-1) was used for observation, only fluorescence of Qdot is observed because YOYO has a very low absorbance below 450 nm. (spectra are prepared using open access spectra analysis application on Invitrogen Inc., USA web site, http://www.invitrogen.com)