This journal is © The Royal Society of Chemistry 2010

Reversible peptide particle formation using a mini amino acid sequence

Thomas B. Schuster^a, Dirk de Bruyn Ouboter^a, Enrica Bordignon^b, Gunnar Jeschke^b, Wolfgang Meier^a

Supporting information

Materials and methods

10 Gel permeation chromatography (GPC)

Measurements of gramicidin A (gA) and Ac-X₃-gT (c = 1 mg/mL) were performed on a Shimadzu Prominence HPLC, using an Agilent PLgel column (5 µm, 10^3 Å, 2 x 250 mm) and isocratic elution with THF/10% H₂O. Stabilizer-free

15 solvent improved detection at the tryptophan adsorption maximum of 280 nm.

Tensiometer

Surface tension was measured on a Sigma 703D Tensiometer (KSV Inst., Finland) with a platinum Wilhelmy plate, pre-

20 cleaned with ethanol and water, followed by flame annealing. Solutions were prepared 24 h prior to measurements, which were performed at room temperature.

UV-VIS

A Perkin Elmer Lambda 35 UV/VIS Spectrometer, equipped ²⁵ with a Peltier temperature control element and a 1 mm cuvette, was used to detect (280 nm) the onset of scattering due to particle formation.

Atomic force microscopy (AFM)

Measurements were carried out using a 5100 Agilent system ³⁰ (formerly PicoLE Molecular Imaging) equipped with a multipurpose scanner. Images were acquired using a silicon cantilever (type-NCHR PointProbe® Plus, force constant 42 N/m) as indicated by the manufacturer for acoustic mode images. Samples were prepared by exposing aqueous peptide

³⁵ solution to a freshly cleaved mica surface for 2 min, removing the supernatant solution, and drying.

Results

Dimersiation probed by GPC

Fig. S1 illustrates GPC elution profiles of Ac-X₃-gT and ⁴⁰ gramicidin in THF and EtOH, whereby a clear separation of monomer and dimer was visible as two peaks for gramicidin only. The amphiphilic peptide elution profile was characterized by a slightly broader peak and no indication of distinct dimerisation.

X₃-gT monomers in different solvents (THF black line, EtOH gray line)

Peptide purity and characterisation

Preparative HPLC profiles with the collected fractions for K₃-⁵⁰ gT are presented in Fig. S2.

Fig. S2 Preparative HPLC elution profile of K_{3} -gT A) first run with ACN/dd $H_2O 0.1$ % TFA B) second run using ACN/dd $H_2O 2$ % ACOH

Verification of mass and purity of the collected fractions was ⁵⁵ analysed by MALDI-Tof-MS and HPLC. Examples are illustrated in Fig. S3.

Acc-X₃-gT C) HPLC profile D) MALDI-ToF-MS

Table S1 presents a summary of the measured mass and purity of the purified compounds.

Table S1	Verification	of mass and	d purity	of the	amphiphilic	peptides
used.						

Code	Mass g/mol	Mass (MALDI-ToF-MS)	Purity (Area %, analyt. HPLC)
K ₃ -gT	1485,9	1486.7	> 99 %
C-K ₃ -gT	1589,9	1588.6	97 %
Ac-X ₃ -gT	1653,9	1677.3 (M+Na ⁺)	98 %
AcC-X ₃ -gT	1757,9	1779.0	96 %
AcC(sl)-X ₃ -gT	1947,0	(M+Na) 1948.5	97 %

Behaviour of C-K₃-gT as surfactant

5

10

Amphiphilic peptides behave like surfactants. It therefore was possible to determine a critical micelle concentration (cmc), as illustrated in Fig. S4).

Fig. S4 Cmc of C-K₃-gT.

Self-assembly of C-K₃-gT into micelles

Fig. S5 Representative TEM image of C-K₃-gT micelles. The minor peptide bead fraction, which is not present in this micrograph, can be seen in Fig. 2 (blank)

Peptide bead formation due to charge shielding

Fig. S6 A) SEM of C-K₃-gT with NaH₂PO₄ (0,025mol/L) B) TEM of AcC-K₃-gT $_{20}$ with NaSCN (0.1mol/L)

Self-assembly of Ac-X₃-gT

EPR derivative spectra

Š

Self-assembled spherical structures - so-called peptide beads - from Ac- X_3 -gT were imaged using SEM, TEM, and AFM (Fig. S7).

Fig. S7 A) SEM of Ac-X_3-gT peptide beads, B) TEM stained with uranyl acetate and C) AFM.

Cw EPR measurements in differnent ethanol/water mixtures

³⁰ Fig. S8 cw EPR spectra of AcC-X₃-gT / AcC(sl)-X₃-gT mixtures depending of ethanol concentration. Arrows mark the characteristic features of the mobile species, which are getting dominant with increasing ethanol concentration.

5

Equilibrium of Ac-X₃-gT in ethanol mixtures

Equilibrium between micelles and peptide beads arises in ethanol/water mixtures. Converting peptide solutions at 4 wt % ethanol to 40 wt % ethanol and vice versa (using

¹⁰ dialysis) always produces the same characteristic DLS signals, proving the reversibility of the system. A diagram of the experiment and the corresponding results are presented in Fig. S7.

Is Fig. S10 Reversibility of the system: Two different starting points (4 wt % and 40 wt %) yield the same DLS features at 4 wt % (■) and at 40 wt % (●) final ethanol content.

Temperature-depentent self-assembly of Ac-X₃-gT

The self-assembly process was initiated by solvent exchange ²⁰ from 100 w % to 20 wt % ethanol. A reversible, temperaturedependent peptide bead formation was monitored at that ethanol concentration. Temperature-dependent UV absorption measurements tracked bead formation as absorption increased due to scattering. As Fig. S11 shows, peptid beads begin to ²⁵ assemble below 25 °C at 20 wt % ethanol. This process was

reversible. The cooling (black line) - heating (red line) cycle exhibits a slight histeresis due to the experimental setup.

Fig. S11 UV measurement of temperature-dependent bead formation (heating (red line), cooling (black line)) using Ac-X₃-gT at 20 wt % EtOH. Photographs were taken at 4 °C (left) and RT (22 °C, right).

Size dependeny of peptide beads in dd H_2O upon initial peptide concentration

Fig. S12 SEM micrographs of Ac-X₃-gT at A) 1.0 mol/L B) 1.5 mol/L

Notes

^a Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH- 4056 Basel, Switzerland; E-mail: <u>wolfgang.meier@unibas.ch</u>

⁴⁰ ^b Laboratory for Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Str. 10, CH- 8093 Zürich, Switzerland