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Appendix A. Finite deformation of thick-walled cylinders under internal stress 

 This section reviews the axisymmetric deformation of a cylindrical void in an elastomer, 

a mode of deformation which we call breathing.16-20
  As illustrated in Fig. 4, in the undeformed 

state, the elastomer is a tube, of internal radius A and external radius B; a material particle is 

named after its distance R from the center of the tube.  In the deformed state, the internal 

radius becomes a, the external radius becomes b, and the material particle R moves to a place a 

distance r from the center of the tube. 

 The elastomer is taken to deform under the plane-strain conditions, so that the axial 

stretch is 1=zλ .  The elastomer is taken to be incompressible, so that the area of the anulus 

between a and r in the deformed state equals that between A and R in the undeformed state, 

namely, 

  
2222 ARar −=− . (A1) 

When the radius of the void a in the deformed state is known, the field of deformation )(Rr  is 

determined by (A1).  Consequently, the tube may be regarded as a system of a single degree of 

freedom, a.  By definition the circumferential stretch is 

  
Rr /=θλ . (A2) 

The assumption of incompressibility relates the radial stretch to the circumferential stretch as 

1=θλλr , so that 

  rRr /=λ . (A3) 

 The elastomer is taken to obey the neo-Hookean model.  The radial component of the 

true stress rσ  and the circumferential component of the true stress θσ  relate to the stretches 

as   

   πλσπλσ θθ −=−= 22 , GG rr , (A4) 

where G is the shear modulus of the elastomer, and π  is the Lagrange multiplier to enforce the 

constraint of incompressibility.   
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 The stresses satisfy mechanical equilibrium: 

  0=
−

+
rdr

d rr θσσσ
, (A5) 

along with the boundary condition 0=rσ  when br = .  Integrating the first-order ordinary 

differential equation (A5), and using (A1)-(A4), we obtain that 
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 The shear modulus G and the radii of the undeformed tube A and B are known 

parameters.  Once the internal radius a of the deformed state is prescribed, (A1) and (A6) 

specify the field of deformation and stress.  In particular, the traction applied on the surface of 

the void, σ , is given by rσ  when ar = .  The relation between σ

 

and a is plotted in Fig. 4 

for ∞→AB / , and in Fig. 10 for several finite values of AB / .  Similar approach can be 

applied to a spherical void.    
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Appendix B.  Linear perturbation from a state of finite deformation 

 This section reviews the linear perturbation analysis. 22-28  Finite deformation of a body 

is governed by the following equations.  Each material particle in the body is named after the 

coordinate X of the particle when the body is in the undeformed state.  In the deformed state, 

the particle X moves to a place of coordinate x.  The deformation of the body is described by 

the field ( )Xx .  The deformation gradient is   

  
( )

K

i
iK X

x
F

∂
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=
X

. (B1) 

A material model is specified by the energy function ( )FW .  The field of nominal stress ( )XiKs  

relates to the deformation gradient as  
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. (B2) 

In equilibrium, the nominal stress satisfies that   

  0=
∂
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K

iK

X

s
 (B3) 

inside the body, and 

  iKiK TNs =  (B4) 

on the surface of the body.  Here N is the unit vector normal to the surface of the body in the 

undeformed state, and T is the force applied on the surface of the deformed body per unit area 

in the undeformed state.  Equations (B1)-(B4) define a boundary-value problem that determine 

the field of finite deformation ( )Xx .  

 Perturb a state of finite deformation with a field of infinitesimal strain, and each field 

variable associated with the perturbation is distinguished with a dot.  Thus, (B1)-(B4) become    
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, (B6) 

  0=
∂
∂

K

iK

X

s&
, (B7) 

  iKiK TNs && = , (B8) 

This set of equations is linear in the field of perturbation.  To apply this set of equations to an 

elastomer, we need to specify the energy function ( )FW , and the traction on the surface T, as 

discussed respectively in the following two paragraphs.    

 The elastomer is taken to be incompressible, so that   

  1det =F . (B9) 

The elastomer is modeled with the neo-Hookean energy function: 

   ( ) ( )1det
2

−−= FF πiKiK FF
G

W . (B10) 

where G is the shear modulus, and ( )Xπ  the Lagrange multiplier to enforce the constraint of 

incompressibility.  Inserting (B10) into (B2), we obtain the stress-strain relation:   

  iKiKiK HGFs π−= . (B11) 

In reaching (B11), we have used an identity for any matrix F: 

  F
F

det
det

iK
iK

H
F

=
∂

∂
, (B12) 

where ijjKiK FH δ=  and KLiLiK FH δ= .  Perturbing ijjKiK FH δ= , we obtain that 

jLjKiLiK FHHH && −= .  The perturbation of the condition of incompressibility (B9) is  

  0=iKiK FH & . (B13) 

The perturbation of the stress-strain relation (B11) is 

  iKjLjKiLiKiK HFHHFGs ππ &&&& −+= . (B14) 
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 For the problem described in this paper, the internal tension σ  is prescribed, so that 

the boundary condition is 

   dandANs iKiK σ= , (B15) 

The deformation changes a material element of area dAN  in the undeformed body to an 

element of area dan  in the deformed body.  Here N is the unit vector normal to the element 

in the undeformed body, and n is the unit vector normal to the element in the deformed body.  

Recall a geometric identity 

  ( ) dANdanF KiiK Fdet= . (B16)   

When the field of finite deformation is perturbed by a field of infinitesimal strain, the internal 

tension σ  is kept constant.  Consequently, the perturbation of the boundary-condition (B15) 

is 

    jLMjMiLKiK FNHHNs && σ−= . (B17) 

Equations (B5), (B7), (B13), (B14) and (B17) constitute an eigenvalue problem of spectrum of 

solutions.  Each solution represents a mode of perturbation:  the associated eigenvalue 

σ represents a critical internal tension, and the associated eigenfields ( )Xx&  and ( )Xπ&  

represent the incremental fields superimposed on those of the finite deformation. 

 In the above, the independent variable is the coordinate X of the material particle in the 

undeformed body.  The independent variable can also be the coordinate of the material particle 

in the deformed body, prior to the perturbation.  The above equations can be rewritten by a 

change of variable.  Write the displacement associated with the perturbation as  

  ( ) ( )Xxxu &= . (B18) 

By a change of variable, the perturbation of the deformation gradient (B5) becomes  
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. (B19) 

where ( ) iKjKij FHL &=x .  The condition of incompressibility (B13) becomes   
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  0=iiL . (B20) 

The perturbed stress-strain relation (B14) becomes 

  ijjiippKjKij LLFGF δππ &−+=Σ , (B21) 

where ( ) jKiKij Fs&=Σ x .  The condition of mechanical equilibrium becomes   

  0=
∂
Σ∂

j

ij

x
    (B22) 

inside the body, and 

  jjijij nLn σ−=Σ   (B23) 

on the surface of the body. 

 The above general formulation can be specialized to the case when the field of finite 

deformation is of cylindrical symmetry and under the plane-strain conditions.  The 

incremental displacement due to perturbation has the radial component ( )θ,rur  and the 

circumferential  component ( )θθ ,ru .  The gradient of incremental displacement is given by  
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The condition of incompressibility becomes 
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The finite deformation takes the form 0,, ==== rrrrr FFFF θθθθθ λλ , so that the incremental 

stress-strain relation takes the form 
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 (B26) 

The incremental equilibrium equations are 
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The boundary conditions are 

  
θθ σ

σ
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 (B28)  

 We set 
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where f(r), g(r) and k(r) are real functions, and m is a real number. Substituting (B29) into 

(B24)-(B27), we obtain that 
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with 22 aAC −= .  Moreover, substitution of eqn. (B29) into the boundary condition (B28) 

yields 
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The ordinary differential equation (B30), along with the boundary conditions (B31), is solved 

numerically using the compound matrix method. 42   
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