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Appendix A. Finite deformation of thick-walled cylinders under internal stress

This section reviews the axisymmetric deformation of a cylindrical void in an elastomer,
a mode of deformation which we call breathing.’6-20 As illustrated in Fig. 4, in the undeformed
state, the elastomer is a tube, of internal radius A and external radius B; a material particle is
named after its distance R from the center of the tube. In the deformed state, the internal
radius becomes a, the external radius becomes b, and the material particle R moves to a place a
distance r from the center of the tube.

The elastomer is taken to deform under the plane-strain conditions, so that the axial
stretch is 4, =1. The elastomer is taken to be incompressible, so that the area of the anulus
between a and r in the deformed state equals that between A and R in the undeformed state,
namely,

r’—a’*=R*- A%, (A1)

When the radius of the void a in the deformed state is known, the field of deformation r(R) is

determined by (Al). Consequently, the tube may be regarded as a system of a single degree of
freedom, a. By definition the circumferential stretch is

A, =Tr/R. (A2)

The assumption of incompressibility relates the radial stretch to the circumferential stretch as

A4, =1, s0 that
A =R/r. (A3)
The elastomer is taken to obey the neo-Hookean model. The radial component of the

true stress o, and the circumferential component of the true stress o, relate to the stretches
as

c,=GX¥-rn, 0,=GA-r, (A4)
where G is the shear modulus of the elastomer, and = is the Lagrange multiplier to enforce the

constraint of incompressibility.
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The stresses satisfy mechanical equilibrium:

do, o -0
r+—9

r

dr r

-0, (A5)

along with the boundary condition o, =0 when r=b. Integrating the first-order ordinary

differential equation (A5), and using (Al)-(A4), we obtain that

o A*-a’(1 1 Rb
Zr — —— |+log—. A6
G 5 ( j+ g (A6)

The shear modulus G and the radii of the undeformed tube A and B are known
parameters. Once the internal radius a of the deformed state is prescribed, (Al) and (A6)
specify the field of deformation and stress. In particular, the traction applied on the surface of

the void, o, is given by o, when r=a. The relation between o and a is plotted in Fig. 4
for B/A— o, and in Fig. 10 for several finite values of B/A. Similar approach can be

applied to a spherical void.
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Appendix B. Linear perturbation from a state of finite deformation

This section reviews the linear perturbation analysis. 2228 Finite deformation of a body
is governed by the following equations. Each material particle in the body is named after the
coordinate X of the particle when the body is in the undeformed state. In the deformed state,
the particle X moves to a place of coordinate x. The deformation of the body is described by

the field x(X). The deformation gradient is

_x(X)
Pk (B1)

A material model is specified by the energy function W(F). The field of nominal stress s, (X)

relates to the deformation gradient as

5 =W (F) (B2)
OF,
In equilibrium, the nominal stress satisfies that
Sk _g (B3)
OX
inside the body, and
Sik N K= Ti (84)

on the surface of the body. Here N is the unit vector normal to the surface of the body in the
undeformed state, and T is the force applied on the surface of the deformed body per unit area
in the undeformed state. Equations (B1)-(B4) define a boundary-value problem that determine

the field of finite deformation x(X).

Perturb a state of finite deformation with a field of infinitesimal strain, and each field
variable associated with the perturbation is distinguished with a dot. Thus, (B1)-(B4) become

_%(X)
ok (B5)
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_W(F)
S, F. , B6
iK OF,KGF jL ( )
2% -0, (B7)
K
S.iK N K :Ti ) (BS)

This set of equations is linear in the field of perturbation. To apply this set of equations to an
elastomer, we need to specify the energy function W(F), and the traction on the surface T, as
discussed respectively in the following two paragraphs.
The elastomer is taken to be incompressible, so that
detF=1. (B9)
The elastomer is modeled with the neo-Hookean energy function:

W(F)z%FIK « —(detF —1). (B10)

where G is the shear modulus, and n(X) the Lagrange multiplier to enforce the constraint of
incompressibility. Inserting (B10) into (B2), we obtain the stress-strain relation:

S, =GF, —2H, . (B11)
In reaching (B11), we have used an identity for any matrix F:

odetF
oF

=H, detF, (B12)

iK

where H,F, =0, and H/F, =0, . Perturbing H, F, =0, , we obtain that

iK' jK ij iK' jK ij
H,=-HH K FjL . The perturbation of the condition of incompressibility (B9) is
Hi 'iiK =0. (B13)

The perturbation of the stress-strain relation (B11) is

=GF, +aH H F —7H, . (B14)

ik L
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For the problem described in this paper, the internal tension o is prescribed, so that
the boundary condition is
s, N, dA=o0on.da, (B15)
The deformation changes a material element of area NdA in the undeformed body to an
element of area nda in the deformed body. Here N is the unit vector normal to the element
in the undeformed body, and n is the unit vector normal to the element in the deformed body.
Recall a geometric identity
F..n,da = det(F)N  dA. (B16)
When the field of finite deformation is perturbed by a field of infinitesimal strain, the internal
tension o is kept constant. Consequently, the perturbation of the boundary-condition (B15)
is
$«N,=-oH,H N,F, . (B17)
Equations (B5), (B7), (B13), (B14) and (B17) constitute an eigenvalue problem of spectrum of
solutions. Each solution represents a mode of perturbation: the associated eigenvalue

o represents a critical internal tension, and the associated eigenfields x(X) and 7#(X)

represent the incremental fields superimposed on those of the finite deformation.

In the above, the independent variable is the coordinate X of the material particle in the
undeformed body. The independent variable can also be the coordinate of the material particle
in the deformed body, prior to the perturbation. The above equations can be rewritten by a
change of variable. Write the displacement associated with the perturbation as

u(x)=x(X). (B18)
By a change of variable, the perturbation of the deformation gradient (B5) becomes

L _oulx). (B19)

box,

where L, (x)z H, Fi . The condition of incompressibility (B13) becomes
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L. =0. (B20)
The perturbed stress-strain relation (B14) becomes
I, =GFF L, +a, —70;, (B21)

where X, (x)=3$, Fi - The condition of mechanical equilibrium becomes

Zix?: (B22)
inside the body, and
>.n =-olL N (B23)
on the surface of the body.
The above general formulation can be specialized to the case when the field of finite

deformation is of cylindrical symmetry and under the plane-strain conditions. The

incremental displacement due to perturbation has the radial component u,(r,d) and the

circumferential component u(,(r,e). The gradient of incremental displacement is given by

ou u 1adu 10u u ou
L, =—=, =—L4+-——0, =——r_—2 =2, B24
"o T r roe0’ " roee r’ " or (B24)
The condition of incompressibility becomes
M U L0, o (B25)
o r roe

The finite deformation takes the form F, =4, F,=4,, F,=F, =0, so that the incremental
stress-strain relation takes the form
s, =GR+, -7
Ly = (G;ti) + ”)Lee —7

X,= Gﬂ“?] LrB + ﬂLer
X, = G/ﬁ L, +x,.,

(B26)

The incremental equilibrium equations are
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(B27)
Oy , O ZatZy _gq
or rod r
The boundary conditions are
2I'I" = _O1_rr
(B28)
X, =-olL,
We set
u,(r,8)= f(r)cos(mo),
u,(r,0)=g(r)sin(mo), (B29)

where f(r), g(r) and k(r) are real functions, and m is a real number. Substituting (B29) into
(B24)-(B27), we obtain that
GriR°f " —2r°R*(R? + 2r*)Gf " + rR?[(C* (4 + m*) + 2C(m* =1r* + 2m* =5)r")G + r’R’z'] f "
+[(-C*(4+m*) = C*(m* +8)r* + C(4m* —=Dr* + 2m* + Dr®)G + r’*R* (27" + rz")]f' + (B30)
A-m?)r’[(C A+m*)+(m*-)r*)G +R*z"]f =0,
with C=A%*-a®. Moreover, substitution of eqn. (B29) into the boundary condition (B28)
yields
(m* =D f +rf’ +r*f"=0,
(1-m?)r’R*(rG + R*z') f + R*[((3m* —1)r* + 4m*r’C + 2(1+ m?*)C?)G + R?r?2']1f' (B31)
—2R*r(R* + r*)Gf " - R°r’Gf " = 0.
The ordinary differential equation (B30), along with the boundary conditions (B31), is solved

numerically using the compound matrix method. 42
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