Supplementary Information

Modeling the rupture of capillary liquid bridge between sphere and

plane

Li Yang ${ }^{a b}$, Yusong Tu ${ }^{a b c}$, and Haiping Fang * $^{a d}$

${ }^{a}$ Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai, 201800, China. E-mail: fanghaiping@sinap.ac.cn
${ }^{b}$ Graduate School of the Chinese Academy of Sciences, Beijing, 100080
${ }^{c}$ Institute of Systems Biology, Shanghai University, Shanghai, 200444, China
${ }^{d}$ T-Life Research Center, Department of Physics, Fudan University, Shanghai, 200433, China

1. Model

The partial enlarged view of the liquid bridge separation process for Fig. 2 in the main text is shown in Fig. S1.

Figure S1. The partial enlarged view of the liquid bridge separation process for Fig. 2.

2. Total interfacial energy \boldsymbol{W} of the liquid bridge

The particle-plane system has three phases (S, solid; L, liquid; V, vapor). The liquid bridge total interfacial energy W can be expressed as follows:

$$
\begin{align*}
W= & W_{L V}+W_{S L}+W_{S V} \\
= & \gamma_{L V} A_{L V}+\gamma_{S L} A_{S L}+\gamma_{S V} A_{S V} \\
= & \gamma_{L V} A_{L V}+\left(\gamma_{S L \text {-particle }} A_{S L \text {-particle }}+\gamma_{S V \text {-particle }} A_{S V \text {-particle }}\right) \\
& +\left(\gamma_{S L \text {-plane }} A_{S L \text {-plane }}+\gamma_{S V \text {-plane }} A_{S V-\text { plane }}\right) \\
= & \gamma_{L V} A_{L V}+\left[\gamma_{S L-\text { particle }} A_{S L \text {-particle }}+\gamma_{S V-\text { particle }}\left(C 1-A_{S L \text {-particle }}\right)\right] \\
& +\left[\gamma_{S L-\text { plane }} A_{S L-\text { plane }}+\gamma_{S V-\text { plane }}\left(C 2-A_{S L-\text { plane }}\right)\right] \tag{S1}
\end{align*}
$$

where γ is the surface energy, A represents the interface area, $C 1$ and $C 2$ are arbitrary constants. Following the assumptions in references $\mathrm{S}_{1}^{\mathrm{S} 1}$ and $\mathrm{S} 2{ }^{\mathrm{S} 2}$
$C 1=C 2=0$,
W can be rewritten into

$$
\begin{equation*}
W=\gamma_{L V} A_{L V}+\left(\gamma_{S L-p a r t i c l e}-\gamma_{S V-\text { particle } e}\right) A_{S L-\text { particle } e}+\left(\gamma_{S L-p a \operatorname{lne}}-\gamma_{S V-\text { plane }}\right) A_{S L-p l a n e} . \tag{S2}
\end{equation*}
$$

Taking the Young equation of $\gamma_{L V} \cos \theta=\gamma_{S V}-\gamma_{S L}$ into consideration, W can be evaluated as a function of the contact angle, surface tension and interface area

$$
\begin{equation*}
W=\gamma_{L V} A_{L V}-\gamma_{L V} \cos \theta_{t} A_{S L-p a r t i c l e}-\gamma_{L V} \cos \theta_{p} A_{S L-\text { plane }} . \tag{S3}
\end{equation*}
$$

The surface areas are given by eqs. (S4), (S5), and (S6) as follows:

$$
\begin{align*}
& A_{S L-\text { particle }}=2 \pi R_{t}^{2}(1-\cos \beta), \tag{S4}\\
& A_{S L-p a \ln e}=\pi x_{P}^{2}, \tag{S5}\\
& A_{L V}=2 \pi \int_{0}^{y_{L}} x(y) \sqrt{1+\left[f(y)^{\prime}\right]^{2}} d y . \tag{S6}
\end{align*}
$$

$f(y)$ is the equation of the meniscus profile in the form of

$$
\begin{equation*}
f(y):\left(x-x_{o}\right)^{2}+\left(y-y_{o}\right)^{2}=r_{t p}^{2} . \tag{S7}
\end{equation*}
$$

Substituting eq. (S7) into eq. (S6), the surface area of liquid-vapor $A_{L V}$ can be rewritten as

$$
\begin{equation*}
A_{L V}=2 \pi r_{t p}\left\{x_{o}\left[\pi-\left(\beta+\theta_{t}+\theta_{p}\right)\right]-y_{t}\right\} . \tag{S8}
\end{equation*}
$$

The total W is then given by substituting eqs. (S4), (S5) and (S8) into eq. (S3),

$$
\begin{align*}
W= & \gamma_{L V} 2 \pi r_{t p}\left\{x_{o}\left[\pi-\left(\beta+\theta_{t}+\theta_{p}\right)\right]-y_{t}\right\} \\
& -2 \pi \gamma_{L V} \cos \theta_{t} R_{t}^{2}(1-\cos \beta)-\pi \gamma_{L V} \cos \theta_{p} x_{P}^{2} . \tag{S9}
\end{align*}
$$

Thus, we arrive at eq. (7) in the main text.

3. The interfacial energy \boldsymbol{U} of the two droplets

The interfacial energy of the two droplets is the sum of the energy of the liquid-vapor (LV), liquid-solid (LS) and solid-vapor (SV) interfaces,

$$
\begin{align*}
U_{\text {droplet }} & =U_{\text {droplet } 1}+U_{\text {droplet 2 }} \\
& =\gamma_{L V-\text { droplet } 1} A_{L V \text {-droplet } 1}+\gamma_{S L \text {-droplet 1 } 1} A_{S L \text {-droplet } 1}+\gamma_{S V \text {-droplet } 1} A_{S V-\text { droplet 1 }} \\
& +\gamma_{L V \text {-droplet } 2} A_{L V-\text { droplet } 2}+\gamma_{S L \text { droplet } 2} A_{S L \text {-droplet } 2}+\gamma_{S V \text {-droplet } 2} A_{S V \text {-droplet } 2} . \tag{S10}
\end{align*}
$$

(a) Case $\theta_{t} \neq 0^{\circ}$ and $\theta_{p} \neq 0^{\circ}$

Considering the rupture of a liquid bridge, we assume that the shape of the two droplets is spherical ($\varphi=\theta_{t}=\theta_{p}$). The volume of a single droplet is

$$
\begin{equation*}
V_{\text {droplet }}=\pi R^{3}\left(2-3 \cos \theta_{t}+\cos ^{3} \theta_{t}\right) / 3 \tag{S11}
\end{equation*}
$$

The interfacial energy of a single droplet is

$$
\begin{align*}
U_{\text {droplet } 1} & =\gamma_{L V} A_{L V}+\gamma_{S L} A_{S L}+\gamma_{S V} A_{S V} \\
& =\gamma_{L V} \pi R^{2}\left(2-3 \cos \theta_{t}+\cos ^{3} \theta_{t}\right) . \tag{S12}
\end{align*}
$$

Substituting eq. (S11) into eq. (S12), the expression of $U_{\text {droplet } 1}$ becomes

$$
\begin{equation*}
U_{\text {droplet } 1}=\gamma_{L V}\left[9 \pi\left(2-3 \cos \theta_{t}+\cos ^{3} \theta_{t}\right)\right]^{1 / 3} V_{\text {droplet } 1}{ }^{2 / 3} . \tag{S13}
\end{equation*}
$$

For convenience, we introduce $P 1$ and $P 2$ by defining

$$
\begin{align*}
& P_{1}=\left[9 \pi\left(2-3 \cos \theta_{t}+\cos ^{3} \theta_{t}\right)\right]^{1 / 3}, \tag{S14}\\
& P_{2}=\left[9 \pi\left(2-3 \cos \theta_{p}+\cos ^{3} \theta_{p}\right)\right]^{1 / 3} . \tag{S15}
\end{align*}
$$

Consequently, $U_{\text {droplet } 1}$ can be expressed as a function of P_{l},

$$
\begin{equation*}
U_{\text {droplet } 1}=\gamma_{L V} P_{1} V_{\text {droplet } 1}^{2 / 3} \tag{S16}
\end{equation*}
$$

With the identical methods, we can get

$$
\begin{equation*}
U=\gamma_{L V} P_{1} V_{\text {droplet } 1}{ }^{2 / 3}+\gamma_{L V} P_{2} V_{\text {droplet } 2}{ }^{2 / 3} \tag{S17}
\end{equation*}
$$

Using the identities $K=\left(\frac{P_{1}}{P_{2}}\right)^{3}$ and $\quad V=V_{\text {droplet 1 }}+V_{\text {droplet 2 }}, U$ can be finally rewritten as follows:

$$
\begin{equation*}
U=\gamma_{L V} P_{2} V^{2 / 3}(1+K)^{1 / 3} . \tag{S18}
\end{equation*}
$$

Thus, we arrive at eq. (8) in the main text.
(b) Case $\theta_{t}=\theta_{p}=0^{\circ}$

Using the calculation methods as case (a), we assume that shape of the two droplets is circular cone in the perfect wetting condition $(\varphi=\beta)$, and that the height of the droplets are $H_{t p} / 2$, the final expression for U is now given by

$$
\begin{align*}
U & =\gamma_{L V} A_{L V}+\gamma_{S L} A_{S L}+\gamma_{S V} A_{S V} \\
& =\gamma_{L V} \pi\left[x_{t} \sqrt{x_{t}^{2}+{H_{t p}^{2}}^{2}}-x_{t}^{2}+x_{P} \sqrt{x_{P}^{2}+H_{t p}^{2}}-x_{P}^{2}\right] \tag{S19}
\end{align*}
$$

Therefore, we get eq. (9) in the main text.

References

S1. X. Pepin, D. Rossetti, S. M. Iveson and S. J. R. Simons, Journal of Colloid and Interface Science, 2000, 232, 289-297.

Supplementary Material (ESI) for Soft Matter
This journal is (c) The Royal Society of Chemistry 2010
S2. P. Lambert, Capillary forces in microassembly: modeling, simulation, experiments, and case study, Springer Verlag, 2007.

