Supporting Information:

Redox Nanoreactor Dendrimer Boxes: *In-Situ* Hybrid Gold Nanoparticles via Terthiophene and Carbazole Peripheral Dendrimer Oxidation

Chatthai Kaewtong^{1,2}, Guoqian Jiang¹, Ramakrishna Ponnapati¹, Buncha Pulpoka² and Rigoberto Advincula¹*

¹Department of Chemistry and Department of Chemical Engineering, University of Houston, Houston, Texas 77204-5003 ²Supramolecular Chemistry Research Unit and Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.

Experimental Section

General Information: Commercially available reagents were used without further purification unless noted otherwise. Solvents were purified by common methods. The starting materials ethyl- 2-(2,5-di(thiophen-2-yl)thiophen-3-yl)acetate,¹⁴ and methyl-3,5-bis[4-(9*H*-carbazol-9-yl)butoxy]benzoate¹⁵ were prepared according to literature procedures. ¹H and ¹³C NMR spectra were recorded with a General Electric QE-300 spectrometer operating at 300 MHz. Absorption and fluorescence spectra were recorded with a Agilent 8453 UV-visible spectrometer and a Perkin Elmer LS 45 luminescence spectrometer, respectively. All FTIR measurements were performed using a Digilab FTS 7000 step scan spectrometer. The spectra was obtained using the ATR technique drop cast on Si wafer. Morphology studies by SEM was performed using a JSM 6330F (JEOL) instrument operating at 15 kV. X-ray photoelectron spectroscopy (XPS) was carried out on a Physical Electronics 5700 instrument with photoelectrons generated by the

nonmonochromatic Al K α irradiation (1486.6 eV). Photoelectrons were collected at a takeoff angle of 45° using a hemispherical analyzer operated in the fixed retard ratio mode with an energy resolution setting of 11.75 eV. The binding energy scale was calibrated prior to analysis using the Cu 2p_{3/2} and Ag 3d_{5/2} lines. Charge neutralization was ensured through cobombardment of the irradiated area with an electron beam and the use of the nonmonochromated Al K α source. Atomic force microscopy (AFM) imaging was examined in ambient conditions with a PicoSPM II (PicoPlus, Molecular Imaging) in the Magnetic AC mode (MAC mode) using a magnetic field to drive a magnetically coated cantilever in the top-down configuration. Type II MAC levers with a spring constant of 2.8 nN/M with about 10 nm tip radius were used for all scans.

3,5-Bis[4-(9H-carbazol-9-yl)butoxy]benzoic Acid (1):

A mixture of methyl-3,5-bis[4-(9*H*-carbazol-9-yl)butoxy]benzoate (3.00 g, 4.91 mmol) and KOH (2.76 g, 49.12 mmol) in tetrahydrofuran/methanol (30 mL/60 mL) was refluxed with vigorous stirring for overnight. After cooling to room temperature, the mixture was concentrated to dryness under reduced pressure. The residue was acidified to pH 2-3 with HCl, and then the precipitate was filtered and washed with ether to give **1** as a white solid (2.76 g, yield 94 %). ¹H NMR (300 MHz, CDCl₃) δ 8.09 (d, *J* = 7.8 Hz, 4H, Ar*H*_{CBz}), 7.84-7.39 (m, 8H, Ar*H*_{CBz}), 7.24-7.17 (m, 4H, Ar*H*_{CBz}), 7.16 (s, 2H, Ar*H*), 6.57 (s, 1H, Ar*H*), 4.40 (t, *J* = 6.3 Hz, 4H, NCH₂CH₂), 3.94 (t, *J* = 6.0 Hz, 4H, OCH₂CH₂), 2.08 (m, 4H, NCH₂CH₂CH₂), 1.84 (m, 4H, OCH₂CH₂CH₂) ppm.

2-(2,5-Di(thiophen-2-yl)thiophen-3-yl)acetic acid (2).

A mixture of ethyl-2-(2,5-di(thiophen-2-yl)thiophen-3-yl)acetate (3.40 g, 10.18 mmol) and KOH (5.71 g, 101.79 mmol) in tetrahydrofuran/methanol (55 mL/110 mL) was refluxed with vigorous stirring for overnight. After cooling to room temperature, the mixture was concentrated to dryness under reduced pressure. The residue was acidified to pH 2-3 with HCl , then extracted with ether. The combined organic layer was dried with anhydrous NaSO₄. After removal the solvent, the residue was dried to give **2** as a yellow solid (2.70 g, 81 % yield). ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.00 (m, 7H, ArH_{3t}), 3.78 (s, 2H, ArCH₂COOH) ppm.

Perfluorophenyl-3,5-bis(4-(9H-carbazol-9-yl)butoxy)benzoate (3).

A mixture of compound **1** (0.20 g, 0.34 mmol) and pentafluorphenol (0.08 g, 0.42 mmol) were allowed to react in 20 mL of dry THF in the presence of dicyclohexylcarbodiimide (DCC) (0.10 g, 0.50 mmol) and *p*-(dimethylamino)pyridine (DMAP) (0.06 g, 0.49) for 2 days. After separation of dicyclohexylurea by filtration, the solvent was removed by rotary evaporation. The resulting residue was purified by column chromatography on silica gel (CH₂Cl₂/*n*-hexane (v:v/1:1)). The compound **3** was obtained as an orange crystal (0.15 g (68%)). ¹H NMR (300 MHz, CDCl₃) δ 8.10 (d, *J* = 7.5 Hz, 4H, Ar*H*_{CBz}), 7.50-7.40 (m, 8H, Ar*H*_{CBz}), 7.24-7.20 (m, 4H, Ar*H*_{CBz}), 6.63 (s, 1H, Ar*H*), 6.62 (s, 1H, Ar*H*), 6.61 (s, 1H, Ar*H*), 4.38 (t, *J* = 6.6 Hz, 4H, NCH₂CH₂), 3.94 (t, *J* = 6.0 Hz, 4H, OCH₂CH₂), 2.08 (m, 4H, NCH₂CH₂CH₂), 1.85 (m, 4H, OCH₂CH₂CH₂) ppm.

Perfluorophenyl-2-(2,5-di(thiophen-2-yl)thiophen-3-yl)acetate (4)

Compound **4** was prepared by the same procedure of **3** by using compound **2** (0.20 g, 0.65 mmol), pentafluorphenol (0.15 g, 0.82 mmol), dicyclohexylcarbodiimide (DCC) (0.20 g, 0.98 mmol) and *p*-(dimethylamino)pyridine (DMAP) (0.12 g, 0.98) in 20 mL of dry THF . After purification by column chromatography on silica gel (CH₂Cl₂/*n*-hexane (v:v/1:1)), compound 4 was obtained as an orange crystal(0.03 g (10%)). δ 7.49-7.10 (m, 7H, ArH_{3t}), 4.17 (s, 2H, ArCH₂COOAr) ppm.

2-(3,5-Bis(4-(9H-carbazol-9-yl)butoxy)phenyl)acetoyl-Functionalized Dendrimer (PC).

PAMAM-(NH₂)₆₄ (18.40 mg, 1.3 µmol) with 64 primary amine groups was dissolved in a mixture of 10 mL of dried THF and 10 mL of dried DMF. To this solution was slowly added with a solution of perfluorophenyl 3,5-bis(4-(9H-carbazol-9-yl)butoxy)benzoate (**3**) (74.00 mg, 97.5 µmol) in a dropwise fashion. After the addition was completed, the reaction mixture was refluxed for 2 days, yielding an orange solution. The solvent was removed by rotary evaporation. The obtained crude product was washed with diethyl ether twice and recrystallized from CH₂Cl₂/MeOH to afford pure **5** as a yellow solid (42 mg, 85%). ¹H NMR (300 MHz, CDCl₃) δ 8.10 (br s, 184H, Ar*H*_{CBz}), 7.34-7.15 (m, 552H, Ar*H*_{CBz}), 6.75 (br s, 138H, Ar*H*), 6.30 (br s, 46H, ArCON*H*CH₂), 4.10 (br s, 184H, NC*H*₂CH₂), 3.57 (br s, 184H, OC*H*₂CH₂), 3.49-2.11 (m, 1138H, CH₂CH₂NHCO,

NCH₂CH₂N and CH₂NH₂), 1.78 (br s, 184H, NCH₂CH₂CH₂), 1.55 (br s, 184H, OCH₂CH₂CH₂) ppm. A total of 46 carbazole units were attached out of 64 amine sites (85%) available as determined by NMR. UV-vis (Toluene): $\lambda_{max} = 332$ and 345 nm.

2-(2,5-Di(thiophen-2-yl)thiophen-3-yl)acetoyl-Functionalized Dendrimer (PT).

Dendrimer **6** was synthesized by using the same methodology as dendrimers **5** with PAMAM-(NH₂)₆₄ (12.20 mg, 0.0009 mmol) with 64 primary amine groups and perfluorophenyl-2-(2,5-di(thiophen-2-yl)thiophen-3-yl)acetate (4) (30.00 mg, 0.0635 mmol) in a mixture of 10 mL of dried THF and 10 mL of dried DMF. Dendrimer **6** was obtained as a yellow solid (21 mg, 83%). ¹H NMR (300 MHz, CDCl₃) δ 8.23 (br s, 44H, CH₂CON*H*CH₂), 7.54-7.15 (m, 308H, Ar*H*_{3t}), 3.75 (br s, 88H, ArC*H*₂CONH), 3.43-2.39 (m, 1160H, CH₂C*H*₂NHCO, NC*H*₂CH₂N and CH₂N*H*₂) ppm. A total of 44 carbazole units were attached out of 64 amine sites (83%) available as determined by NMR. UV-vis (Toluene): $\lambda_{max} = 344$ nm.

FT-IR Spectra

SI Figure 1. FT-IR ATR spectra of PAMAM dendrimers functionalized with 10^{-6} M of terthiophene (PT) and carbazole (PC) dendrons before and after mixing with AuCl₃ in toluene – drop cast on Si wafer.

XPS Characterization.

SI Figure 2. High-resolution XPS of the informative elements for the structure determination of (a) PPT-AuNPs and (b) PPC-AuNPs. Au^o formation was confirmed for the PPT-AuNPs whereas none with PPC.

Atomic Force Microscopy.

SI Figure 3. AFM image $(2 \times 2 \mu M)$ of PT (a) and PPT-AuNPs (b) on mica substrate.

(a)

(b)

SI Figure 4. AFM image (2 x 2 μ M) of PC (a) and PPC-AuNPs (b) on mica substrate.

Electropolymerization of PC.

The electopolymerization of PC was done at a scan rate of 50 mV/s against Ag/AgCl reference electrode and platinum counter electrode. At the low potential application (1.3 V), a good trend of increasing oxidation potential onset was observed with increasing of cycles but the CV curves shifted to higher anodic potential (E_{pa}) and the reduction peaks shifted to lower cathodic potential (E_{pc}). Degradation was observed after applying a higher potential (1.5 V) which may come from the lack of availability of more mobile electroactive monomers. Moreover, the UV-vis spectra revealed the formation of less conjugated polycarbazole species (predominantly dimerization).

SI Figure 5. Cyclic voltammograms of the electrochemical cross-linking/deposition of PC at a scan rate of 50 mV/s, 10 cycles: (a) conc. 10^{-6} M, potential window from 0-1.3 V, (b) conc. 10^{-6} M, potential window from 0-1.5 V, (c) conc. 10^{-5} M, potential window from 0-1.3 V, (d) conc. 10^{-5} M, potential window from 0-1.5 V.

SI Figure 6. Spectroelectrochemical analysis performed in 0.1 M $TBAPF_6/CHCl_3$ on ITO substrate in the present of different concentrations and potential windows of PC