Following the structural changes during zinc-induced crystallization of charged membranes using time-resolved solution X-ray scattering

Moshe Nadler¹, Ariel Steiner¹, Tom Dvir^{1,2}, Or Szekely¹, Pablo Szekely^{1,2}, Avi Ginsburg¹, Roi Asor¹, Roy Resh^{1,2}, Carmen Tamburu¹, Menahem Peres¹ and Uri Raviv^{1,*}

1. The Institute of Chemistry, 2. The Racah Institute of Physics, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel * Corresponding Author: raviv@chem.ch.huji.ac.il

Electronic Supplementary Information (ESI)

Figure 1S. The change in the normalized integrated intensity (A/A_0 , symbols) under the first order lamellar Bragg peaks, after the addition of 100 mM ZnCl₂ to the DLPS dispersion, as a function of the time elapsed after the addition. The solid lines are a fit to the Avrami model. The results and the fit are divided by the integrated intensity at infinite time, A_0 , as obtained individually for each phase from the fit. The The L_β to L_C phase transition has the Avrami parameter $n = 2.3 \pm 0.2$, $k = (1.5 \pm 1) \times 10^{-4}$ min⁻² and $t_i = 10 \pm 5$ min. The data was measured at the ID02 beam-line at ESRF.

Figure 2S. The change in the normalized integrated intensity (A/A_0 , symbols) under the second order lamellar Bragg peaks, after the addition of 100 mM ZnCl₂ to the DLPS dispersion, as a function of the time elapsed after the addition. The solid lines are a fit to the Avrami model. The results and the fit are divided by the integrated intensity at infinite time A_0 , as obtained individually for each phase from the fit. The L_β to L_C phase transition has the Avrami parameter $n = 2.1 \pm 0.2$, $k = (1.5 \pm 1) \times 10^{-4}$ min⁻² and $t_i = 10 \pm 5$ min. The data was measured at the ID02 beamline at ESRF.