SUPPORTING INFORMATION

Ferrocene Based Organometallic Gelators: A Supramolecular Synthon Approach

Pathik Sahoo,^a Vedavati G. Puranik,^b A. K. Partra,^c P. U. Sastry^c and Parthasarathi Dastidar^{*,a}

^aDepartment of Organic Chemistry, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata – 700032, West Bengal, India.
^bCenter for Materials Characterization, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune - 400 008, India
^cSolid State Physics Division, B.A.R.C., Trombay, Mumbai 400085, India

E-mail: parthod123@rediffmail.com; ocpd@iacs.res.in

Physico-chemical data for the salts

- 1. Butylammoniumferrocinedicarboxylate 1₃: m.p. 198-200⁰C. Anal. Calc. for $C_{20}H_{32}FeN_2O_4$: C, 57.15; H, 7.67; N, 6.66. Found: C, 56.74; H, 7.37; N, 6.29. FT-IR (KBr): 3387, 2960, 2929, 2874, 2796, 2681, 2598, 2571, 2212, 1641, 1525, 1460, 1384, 1348, 1329, 1298, 1184, 1074, 1031, 1020, 931, 914, 848, 825, 810, 775, 744, 594, 559, 499, 484, 410 cm⁻¹. ¹H NMR(CD₃OD) (300MHz) δ = 4.67 (4H, s, Ferrocene Proton), 4.25 (4H, s, Ferrocene Proton), 2.92 (4H, t, J = 7.42 Hz, ⁺NH₃CH₂CH₂(CH₂)₁CH₃), 1.67-1.60 (4H, m, ⁺NH₃CH₂CH₂(CH₂)₁CH₃), 1.46-1.39 (4H, m, ⁺NH₃CH₂CH₂(CH₂)₁CH₃), 0.97 (6H, t, J = 7.23Hz, ⁺NH₃CH₂CH₂(CH₂)₁CH₃).
- 2. Pentylammoniumferrocenedicarboxylate 1₄: m.p. 190⁰C. Anal. Calc. for $C_{22}H_{36}FeN_2O_4$: C, 58.93; H, 8.09; N, 6.25. Found* C, 57.25; H, 7.84; N, 5.84. FT-IR (KBr): 3421, 3022, 2956, 2931, 2870, 2137, 1647, 1575, 1473, 1386, 1357, 1344, 1209, 1182, 1051, 1022, 821, 788.91, 561, 513, 482 cm⁻¹. ¹H NMR(CD₃OD) (500MHz) $\delta = 4.68$ (4H, s, Ferrocene Proton), 4.25 (4H, s, Ferrocene Proton), 2.91 (4H, t, J = 7.5Hz, ⁺NH₃CH₂CH₂(CH₂)₂CH₃), 1.68-1.65 (4H, m, ⁺NH₃CH₂CH₂(CH₂)₂CH₃), 1.39-1.36 (8H, m, ⁺NH₃CH₂CH₂(CH₂)₂CH₃), 0.94 (6H, t, J = 6.75, ⁺NH₃CH₂CH₂(CH₂)₂CH₃). **this is the best results obtained among the several samples tested for elemental analysis*.
- **3. Hexylammoniumferrocenedicarboxylate 1**₅: m.p. 164-167⁰C. Anal. Calc. for $C_{24}H_{40}FeN_2O_4$: C, 60.50; H, 8.46; N, 5.88. Found: C, 60.67; H, 8.40; N, 5.30. FT-IR (KBr): 3385, 3090, 3005, 2951, 2931, 2856, 2202, 1633, 1548, 1518, 1473, 1458, 1386, 1338, 1184, 1101, 821, 790, 667, 513 cm⁻¹. ¹H NMR(CD₃OD) (300MHz) $\delta = 4.67$ (4H, s, Ferrocene Proton), 4.25 (4H, s, Ferrocene Proton), 2.91 (4H, t, J = 7.29 Hz, ⁺NH₃CH₂CH₂(CH₂)₃CH₃), 1.66-1.64 (4H, m, ⁺NH₃CH₂CH₂(CH₂)₃CH₃), 1.35 (12H, m, ⁺NH₃CH₂CH₂(CH₂)₃CH₃), 0.90 (6H, br S, ⁺NH₃CH₂CH₂(CH₂)₃CH₃).
- **4. Heptylammoniumferrocenedicarboxylate 1**₆**:** m.p. 155⁰C. Anal. Calc. for C₂₆H₄₄FeN₂O₄: C, 61.90; H, 8.79; N, 5.55. Found: C, 61.50; H, 8.18; N, 5.13. FT-

IR (KBr): 3111, 2960, 2928, 2854, 2783, 2686, 2600, 2551, 2212, 1647, 1626, 1518, 1460, 1383, 1338, 1184, 1024, 823, 808, 785, 553, 501, 412 cm⁻¹. ¹H NMR(CD₃OD) (300MHz) $\delta = 4.67$ (4H, s, Ferrocene Proton), 4.25 (4H, s, Ferrocene Proton), 2.91 (4H, t, J = 7.44Hz, ⁺NH₃CH₂CH₂(CH₂)₄CH₃), 1.66-1.64 (4H, m, ⁺NH₃CH₂CH₂(CH₂)₄CH₃), 1.36-1.32 (16H, m, ⁺NH₃CH₂CH₂(CH₂)₄CH₃), 0.89 (6H, br S, ⁺NH₃CH₂CH₂(CH₂)₄CH₃).

- 5. Nonaylammoniumferrocenedicarboxylate 1_8 : m.p. 137^{0} C. Anal. Calc. for $C_{30}H_{52}FeN_2O_4$: C, 64.28; H, 9.35; N, 5.00. Found: C, 64.26; H, 8.45; N, 4.68. FT-IR (KBr): 3111, 2958, 2922, 2852, 2783, 2683, 2573, 2220, 1647, 1626, 1519, 1460, 1383, 1338, 1184, 1024, 823, 808. 785, 555, 501, 418 cm⁻¹. ¹H NMR (CD₃OD) (300MHz) $\delta = 4.67$ (4H, s, Ferrocene Proton), 4.25 (4H, s, Ferrocene Proton), 2.91 (4H, t, J = 7.32Hz, ⁺NH₃CH₂CH₂(CH₂)₆CH₃), 1.66 (4H, br S, ⁺NH₃CH₂CH₂(CH₂)₆CH₃), 1.35-1.29 (24H, br S, ⁺NH₃CH₂CH₂(CH₂)₆CH₃), 0.88 (6H, m, ⁺NH₃CH₂CH₂(CH₂)₆CH₃).
- 6. **Decylammoniumferrocenedicarboxylate 1**₉: m.p. 138-140⁰C. Anal. Calc. for $C_{32}H_{56}FeN_2O_4$: C, 65.29; H, 9.59; N, 4.76. Found: C, 65.28; H, 9.80; N, 5.17. FT-IR (KBr): 3109, 3091, 2947, 2916, 2852, 2794, 2681, 2578, 2224, 1653, 1629, 1518, 1460, 1384, 1338, 1184, 1120, 1024, 908, 823, 806, 785, 719, 555, 501, 435, 418 cm⁻¹. ¹H NMR(CD₃OD) (300MHz) δ = 4.67 (4H, d, J = 1.8Hz, Ferrocene Proton), 4.25 (4H, d, J = 1.8Hz, Ferrocene Proton), 2.90 (4H, t, J = 7.32Hz, ⁺NH₃CH₂CH₂(CH₂)₇CH₃), 1.65 (4H, br S, ⁺NH₃CH₂CH₂(CH₂)₇CH₃), 1.29 (28H, br S, ⁺NH₃CH₂CH₂(CH₂)₇CH₃), 0.88 (6H, m, ⁺NH₃CH₂CH₂(CH₂)₇CH₃).
- 7. Undecylammoniumferrocenedicarboxylate 1_{10} : m.p. 136-138^oC. Anal. Calc. for C₃₄H₆₀FeN₂O₄: C, 66.22; H, 9.81; N, 4.54. Found: C, 65.62; H, 9.09; N, 4.39. FT-IR (KBr): 3111, 3091, 2958, 2918, 2852, 2787, 2681, 2578, 2218, 1651, 1626, 1564, 1516, 1460, 1383, 1338, 1184, 1024, 954, 908, 823, 808, 785, 719, 553, 501, 414 cm⁻¹. ¹H NMR(CD₃OD) (500MHz) δ = 4.66(4H, s, Ferrocene Proton), 4.24 (4H, s, Ferrocene Proton), 2.90 (4H, t, J = 7.50Hz, ⁺NH₃CH₂CH₂(CH₂)₈CH₃), 1.65-1.64 (4H, m, ⁺NH₃CH₂CH₂(CH₂)₈CH₃), 1.35-1.28 (32H, m, ⁺NH₃CH₂CH₂(CH₂)₈CH₃), 0.88 (6H, t, J = 6.5, ⁺NH₃CH₂CH₂(CH₂)₈CH₃).
- 8. **Dodecylammoniumferrocenedicarboxylate** 1_{11} : m.p. 142-146⁰C. Anal. Calc. for C₃₆H₆₄FeN₂O₄: C, 67.06; H, 10.01; N, 4.34. Found: C, 67.31; H, 9.80; N, 4.26. FT-IR (KBr): 3109, 3091, 2916, 2852, 2789, 2685, 2565, 2225, 1629, 1519, 1460, 1384, 1338, 1184, 1122, 1033, 806, 785, 555, 501, 418 cm⁻¹. ¹H NMR(CD₃OD) (300MHz) δ = 4.68(4H, s, Ferrocene Proton), 4.25 (4H, s, Ferrocene Proton), 2.90 (4H, t, J = 7.5Hz, ⁺NH₃CH₂CH₂(CH₂)₉CH₃), 1.65-1.63 (4H, m, ⁺NH₃CH₂CH₂(CH₂)₉CH₃), 1.35-1.28 (36H, m, ⁺NH₃CH₂CH₂(CH₂)₉CH₃), 0.89(6H, t, J = 6.16, ⁺NH₃CH₂CH₂(CH₂)₉CH₃).
- 9. Tridecylammoniumferrocenedicarboxylate 1_{12} : m.p. 138-141⁰C. Anal. Calc. for $C_{38}H_{68}FeN_2O_4$: C, 67.84; H, 10.19; N, 4.16. Found: C, 67.35; H, 9.81; N, 4.28. FT-IR (KBr): 3111, 3091, 2958, 2918, 2852, 2787, 2677, 2576, 2218, 1647, 1627, 1519, 1460, 1383, 1338, 1184, 1024, 825, 808, 785, 553, 501, 418 cm⁻¹. ¹H NMR(CD₃OD) (500MHz) $\delta = 4.68(4H, s, Ferrocene Proton), 4.25$ (4H, s, Ferrocene Proton), 2.89(4H, t, J = 7.5Hz, ⁺NH₃CH₂CH₂(CH₂)₁₀CH₃), 1.66-1.62 (4H, m, ⁺NH₃CH₂CH₂(CH₂)₁₀CH₃), 1.36-1.28 (40H, m, ⁺NH₃CH₂CH₂(CH₂)₁₀CH₃), 0.89(6H, t, J = 6.5, ⁺NH₃CH₂CH₂(CH₂)₁₀CH₃).

Supplementary Material (ESI) for Soft Matter This journal is © The Royal Society of Chemistry 2011

- **10. Tetradecylammoniumferrocenedicarboxylate** 1_{13} : m.p. 134-138^oC. Anal. Calc. for C₄₀H₇₂FeN₂O₄: C, 68.55; H, 10.35; N, 4.00. Found: C, 68.74; H, 10.73; N, 3.98. FT-IR (KBr): 3109, 3093, 3080, 2916, 2852, 2796, 2677, 2573, 2225, 1633, 1516, 1460, 1384, 1338, 1184, 1124, 1026, 956, 823, 806, 783, 717, 555, 501, 482, 418 cm⁻¹. ¹H NMR(CD₃OD) (500MHz) δ = 4.68(4H, s, Ferrocene Proton), 4.25 (4H, s, Ferrocene Proton), 2.89(4H, t, J = 7.50Hz, ⁺NH₃CH₂CH₂(CH₂)₁₁CH₃), 1.65-1.61 (4H, m, ⁺NH₃CH₂CH₂(CH₂)₁₁CH₃), 1.36-1.28 (44H, m, ⁺NH₃CH₂CH₂(CH₂)₁₁CH₃), 0.89(6H, t, J = 6.75, ⁺NH₃CH₂CH₂(CH₂)₁₁CH₃).
- 11. Pentadecylammoniumferrocenedicarboxylate 1_{14} : m.p. 131^{0} C. Anal. Calc. for $C_{42}H_{76}FeN_2O_4$: C, 69.21; H, 10.51; N, 3.84. Found: C, 69.16; H, 10.23; N, 3.82. FT-IR (KBr): 3111, 3090, 3078, 2958, 2916, 2852, 2787, 2677, 2584, 2214, 1629, 1519, 1458, 1384, 1336, 1199, 1182, 1028, 806, 783, 553, 501 cm⁻¹. ¹H NMR(CD₃OD) (500MHz) $\delta = 4.67(4H, s, Ferrocene Proton), 4.24$ (4H, s, Ferrocene Proton), 2.89(4H, t, J = 7.5Hz, ⁺NH₃CH₂CH₂(CH₂)₁₂CH₃), 1.68-1.62 (4H, m, ⁺NH₃CH₂CH₂(CH₂)₁₂CH₃), 1.37-1.27 (48H, m, ⁺NH₃CH₂CH₂(CH₂)₁₂CH₃), 0.89(6H, t, J = 6.75, ⁺NH₃CH₂CH₂(CH₂)₁₂CH₃).
- 12. Hexadecylammoniumferrocenedicarboxylate 1_{15} : m.p 131^{0} C. Anal. Calc. for C₄₄H₈₀FeN₂O₄: C, 69.81; H, 10.65; N, 3.70. Found: C, 69.61; H, 10.53; N, 3.81. FT-IR (KBr): 3109, 3091, 3080, 2916, 2852, 2796, 2681, 2573, 2225, 1631, 1519, 1460, 1384, 1338, 1184, 1030, 806, 783, 717, 555, 501, 489, 416 cm⁻¹. ¹H NMR(CD₃OD) (300MHz) $\delta = 4.68(4$ H, s, Ferrocene Proton), 4.25 (4H, s, Ferrocene Proton), 2.90(4H, t, J = 7.45Hz, ⁺NH₃CH₂CH₂(CH₂)₁₃CH₃), 1.65 (4H, m, ⁺NH₃CH₂CH₂(CH₂)₁₃CH₃), 1.35-1.28 (52H, m, ⁺NH₃CH₂CH₂(CH₂)₁₃CH₃), 0.89(6H, t, J = 5.95, ⁺NH₃CH₂CH₂(CH₂)₁₃CH₃).

Supplementary Material (ESI) for Soft Matter This journal is © The Royal Society of Chemistry 2011

FT-IR of 5 wt % DMF gels (olive) and the corresponding salt as synthesized (blue)

X-ray single crystal data.

Data were collected using MoK α ($\lambda = 0.7107$ Å) radiation on a BRUKER APEX II diffractometer equipped with CCD area detector. Data collection, data reduction, structure solution/refinement were carried out using the software package of SMART APEX. All structures were solved by direct method and refined in a routine manner. In most of the cases, nonhydrogen atoms were treated anisotropically. All the hydrogen atoms were geometrically fixed. CCDC (CCDC No. 795748-795753) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

Molecular Plots and Hydrogen Bonding Parameters for the compounds

Compound: 15

D —H···A	<i>D</i> —Н	Н…А	D ···A	D —Н···A			
15							
N10—H10A…O3 ¹	0.89	1.82	2.700 (8)	168.3			
N10—H10B…O2 ⁱⁱ	0.89	1.92	2.770 (8)	160.0			
N10—H10C…O2 ⁱⁱⁱ	0.89	1.87	2.727 (8)	160.0			
Symmetry codes: (i) $x+1$, y, z; (ii) $-x+1$, $-y+1$, $-z+2$; (iii) x, y, z.							

Compound: 19

19				
N10—H10A…O3 ⁱ	0.89	1.90	2.770 (3)	164.2
N10—H10B…O3 ⁱⁱ	0.89	1.87	2.724 (3)	159.6
N10—H10C…O2 ⁱⁱⁱ	0.89	1.82	2.694 (3)	166.9
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$; (ii) $x+1$, y , z ; (iii) x , y , z .				

Compound: 1₁₁

1 ₁₁				
N10—H10A…O3 ¹	0.89	1.91	2.775 (3)	164.6
N10—H10B…O3 ⁱⁱ	0.89	1.87	2.724 (3)	159.5
N10—H10C…O2 ⁱⁱⁱ	0.89	1.82	2.697(3)	166.6
Symmetry codes: (i) -x, -y+1, -z; (ii) x-1, y-1, z; (iii) x, y-1, z				

Compound: 1₁₂

1 ₁₂				
N10—H10A····O3 ¹	0.89	1.91	2.778 (3)	162.8
N10—H10B…O3 ⁱⁱ	0.89	1.88	2.731 (3)	160.5
N10—H10C…O2 ⁱⁱⁱ	0.89	1.85	2.722 (3)	167.9
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$; (ii) $x-1$, $y-1$, z ; (iii) x , $y-1$, z				

Compound: 1₁₃

1 ₁₃				
N10—H10C…O2 ⁱ	0.89	1.92	2.779 (3)	162.8
N10—H10B…O2 ⁱⁱ	0.89	1.87	2.729 (3)	160.7
N10—H10A…O3 ⁱⁱⁱ	0.89	1.82	2.697 (3)	169.5
Symmetry codes: (i) $-x+1$, $-y$, $-z$; (ii) $x+1$, $y-1$, z ; (iii) x , $y-1$, z .				

ompound: 1₁₄

F.2A ₁₄				
N10—H10A····O3 ⁱ	0.89	1.92	2.777 (3)	161.3
N10—H10B…O2 ⁱⁱ	0.89	1.84	2.725 (3)	170.2
N10—H10C…O3 ⁱⁱⁱ	0.89	1.88	2.737 (3)	161.3
Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1, -y, -z+1$; (iii) $-x+2, -y, -z+1$.				