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S-1 The spherical harmonics functions and series expansion 
 

The usual (non-parametric or direct) spherical harmonics expansion of a radial function ( , )r θ φ in 

spherical polar coordinates ( , )θ φ can be given by, 

( , ) ( , )
L

LK LK
L K L

r C Yθ φ θ φ
∞

=−

=∑ ∑  

where, 

( , ) (cos ) iK
LK LK LKY N P e φθ φ θ= ⋅  

with (cos )LKP θ  the associated Legendre functions and LKN  normalization constants. L and K are 

integers, 0 θ π≤ ≤  and 0 2φ π≤ ≤ . Since it is more straightforward to work with real functions, we 

define the real symmetric and anti-symmetric combinations of the above functions, ( , )y θ φ . 

( , ) (cos )cos( )LK LKy P Kθ φ θ φ=  

for 0K ≥ , and  

( , ) (cos )sin( )LK LKy P Kθ φ θ φ=  

for 0K < , where ( )LKP x is given by 

( ) ( )0
( )!( ) 2 2 1 ( )
( )!LK K LK
L KP x L P x
L K

δ −
= − ⋅ + ⋅ ⋅

+
 

where we used the normalization given in Heiskanen and Moritz 1. Also  

2 2( ) (1 ) ( )
KK

LK LK

dP x x P x
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= − ⋅  

where 

21( ) ( 1)
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L
L
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dP x x
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= ⋅ −
⋅

 

Note that: 

1- The factor ( 1)K− ,called the "Condon-Shortly phase factor", is not included in our definition. 

2- 0 ( ) ( )L LP x P x=  

 

 

The expressions for (cos )LKP θ  for up to L=2 are given below (x = cos(θ)): 
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00 ( ) 1P x =  

10 ( )P x x=  

11( ) sinP x θ=  

2
20

1( ) (3 1)
2

P x x= −  

21( ) 3cos sinP x θ θ=  

2
22 ( ) 3sinP x θ=  

 

S-2 Calculation of associated Legendre functions and derivatives 

For constructing the basis it is necessary to calculate the associated Legendre functions efficiently. This is 

done by recursion. For the calculation of geometric properties, calculation of their derivatives is also 

necessary. We provide efficient and numerically stable expressions below2.  

The ,L KP  are calculated using backward recursion relations3. For each integer 0L ≥  the value of 

, (cos )L KP θ  is evaluated using the relation 

,
(2 )! 1(cos( )) ( sin )

! 2
L

L L
LP

L
θ θ=       

Other values are calculated from: 

, 2 , 1 ,(cos ) (2 1) cot( ) (cos ) ( )( 1) (cos )L K L K L KP K P L K L K Pθ θ θ θ+ += + ⋅ − − + +  

where , (cos ) 0L KP θ =  when K L> .  

The order k derivatives of the associated Legendre polynomials with respect to θ  are obtained by the 

following relations 2, 4 (shown here without the normalization): 

1 1

, 1 , 11 12 (cos ) ( ) ( 1) (cos ) (cos )
k k k
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d d dP L K L K P P
d d d
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θ θ θ
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1

, 11(cos ) (cos )
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LL L Lk k

d dP L P
d d

θ θ
θ θ

−

−−=  

These relations are stable for low order derivatives and efficient for computation, because the 

derivative expressions do not introduce additional trigonometric function evaluations. For concise 

FORTRAN code to compute normalized derivatives see Bosh 2000 2. 
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S-3 Calculation of surface properties 

 

As stated in the main text, the surface is represented parametrically as: 
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Generally, surface properties are computed from partial derivatives of the surface functions using 

equations of classical differential geometry5. Some of this background will be repeated here for 

clarity as applied to spherical harmonics surface parameterization. Tests of our implementation are 

also provided. 

The surface normal is given by 
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×  

where Sθ  and Sφ  are now the 3-vectors,  
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similarly for Sφ , and the second derivatives. Derivatives of the associated Legendre functions are 

calculated using the recursion relations given above. 

The total surface area A is given by, 

2

0 0

A dA S S d d
π π

θ φ θ φ= = ×∫ ∫ ∫  

The total volume V is given by, 

2

0 0

1 ˆ( )
3

V S n S S d d
π π

θ φ θ φ= ⋅ ×∫ ∫  

The above, and other, quantities can be calculated from the coefficients of the first and second 

fundamental forms. The first fundamental form is given by, 
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The second fundamental form is, 
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The coefficients of the first (E, F, G) and second (L, M, N) fundamental forms are given in terms 

of the surface differentials and normals by, 
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We calculate the local mean curvature H as, 

2

2
2( )

EN GL FMH
EG F
+ −

=
−  

which is needed for calculating the shape energy.  

As a self-check for the accuracy of shape property calculations and their implementation we also 

calculate the Gaussian curvature (K)  

2

2

LN MK
EG F

−
=

−
 

 

which when integrated over a closed surface of spherical topology must satisfy, 

S

1 1
4

k KdA
π

= =∫  

Other properties such as shape index and curvedness may also be obtained.  

Quadrature: 

The above integrals cannot be evaluated analytically. A, V and k  are calculated using numerical 

integration by Gaussian quadrature6. If a function f is to be integrated from -1 to 1, and a Gaussian 

quadrature of order N is chosen, then 
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1

11

( )
N

n n
n

f x dx f w
=−

≈ ∑∫  

where the function is evaluated at the points xn, -1<xn<1, and wn are the Gaussian quadrature 

weights. If the integration limits are instead a and b, then one uses the linear transformation: 

' 1 1( ) ( )
2 2n nx b a x b a= − + +  

f is evaluated at these new points. 

In the following we will test our Gaussian quadrature implementation using surface area 

calculations for ellipsoids. 

S-4 Testing convergence of SHP area calculation with Gaussian quadrature  

We tested our implementation convergence with increasing Gaussian quadrature base points of 

an oblate ellipsoid. We compared the results with total surface area obtained from the ellipsoid 

surface triangulation that results from the iterative subdivision of the icosahedron mapped to the 

sphere. 

A surface triangulation is an approximation of the continuous surface using discrete triangular 

tiles. The geometrical properties area, volume and total mean curvature are additive and continuous 

measures of a surface and are thus guaranteed to converge to the true value of the continuous 

surface in the limit of infinitesimal triangle areas of the mesh. This is an important property that we 

exploit when writing down the formulas for triangulated surfaces7. Surface area is given by the sum 

of the surface areas of the individual triangles: 

mesh

1

N

i
i

A A
=

= ∑  

We found that the surface area calculations converge faster with the Gaussian quadrature method 

(Figure S-1). 

 

S-5 Testing the accuracy of SHP area calculations with Gaussian quadrature 

against analytical methods 

Even in the relatively simple case of a general ellipsoid, i.e. Lmax = 1, there is no analytical 

formula for the total surface area. In this parameterization the ellipsoid, with half axis lengths a, b 

and c,  is given by 
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and the surface differentials with respect to θ and φ, 
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Accordingly, the coefficients of the first fundamental form are given by, 
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So the surface area, after some algebra, is given by, 
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where E(k) is a complete elliptic integral of the second kind. This integral can be approximated 

by a series expansion as, 
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yielding expressions that can be integrated in a straightforward manner and evaluated analytically. 

The expansion was performed for several orders and compared to Gaussian quadrature and the 

approximate Knud Thomsen formula (Figure S-2). 

We conclude that Gaussian quadrature is the most accurate and efficient strategy for evaluating 

geometric properties for general SHP shapes. For all our calculations we used 3600 base points and 

as a self check, the total Gaussian curvature never deviated from 1 up to the 5th decimal.  
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S-6 A note on the preferred curvature and area difference 

 

oC  is a local preference of the membrane bilayer to attain a particular curvature. This preference 

can be related to the microscopic conformational and steric interactions specific to the chemical 

species that make up the bilayer’s outer and inner leaflets, i.e. it is an effect of the local microscopic 

geometry (and takes the area per molecule into account). The pure bending energy is then 

calculated as the deviation of the instantaneous local curvature (H) from that preferred local 

curvature. 

 

At the time of formation of the membrane bilayer, there may be a non-zero difference between 

the areas of the inner and outer leaflets. This area difference results from either a difference in the 

number of lipid molecules in the outer and inner leaflets, or from an asymmetrical distribution of 

lipid species, which possess different areas per molecule, between the two leaflets. When the 

vesicle changes shape, the difference in areas between the two leaflets may change at an energy 

cost due to the deviation of the instantaneous area difference ( A∆ ) from the preferred one ( oA∆ ). 

There is no shear resistance within a pure lipid membrane bilayer, and the lipid molecules are 

assumed to redistribute instantaneously, within their corresponding leaflet, to accommodate the 

change. The effect is non-local in this case. 

 

In the shape minimization calculation, they do not enter in an independent fashion, as will be 

demonstrated below (neglecting the membrane skeleton energy for the moment). 
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since, 

1 2( )A D c c dA∆ = +∫          

we can now rewrite the bending energy equation as 
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where, 
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o
o o

AC C
AD

απ∆
= +           

is an “effective” spontaneous curvature. This result is identical to Equations 6 and 7 in 

Mukhopadhyay et al. 2002 8.  

 

S-7 Numerical implementation of the membrane skeleton energy 
 

To calculate the local principal stretches, the deformation of a triangular mesh, associated with 

SHP, was constructed efficiently at every iteration in the optimization. A particular configuration of 

shape coefficients corresponds to a mesh configuration that generally represents a deformation Φ 

from the relaxed membrane skeleton shape. The shear and stretch energies discretized on this mesh 

are given by 
Triangles Triangles

2 3 4 2
3 4 1 2

1 1
( ) ( )

2

N N

MS i i
i i

KE a a A b b Aα α α α µ β αβ β
= =

= + + + + +∑ ∑   

where Ai represents the area of the ith undeformed triangle. 

 

Shear and stretch calculations depend critically on the ability to calculate the local principal 

stretches (which can then be integrated in a material-model dependent manner over the whole 

shape). 1 2 1α λ λ= −  and 2
1 2 1 2( ) / 2β λ λ λ λ= −  are the local area and shear strain invariants, and λ1,2  

the local principal stretches. The local principal stretches are calculated for each triangle from the 

eigenvalues of the strain tensor G (Figure S-3) as follows: 
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The eigenvalues of G are related to the principal stretches by, 
2

1 1

2
2 2

1 ( 1)2
1 ( 1)2

ε λ

ε λ

= −

= −
 

All calculations were implemented in efficient vectorized fashion in Matlab. 
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S-8 Numerical optimization under constraints using sequential quadratic programming 

 

In order to give the energy model predictive power, it is assumed that the shape obtained 

corresponds to the minimum of the shape energy under constraints of surface area, volume and 

specific values of oC  (or oa∆ ).  

To obtain minimum energy shapes for a given model we used sequential quadratic 

programming9, 10. The Lagrangian of our optimization problem is given by, 

( , ) ( ) ( )TL s f s C sλ λ= −  

with f(s) the objective function that depends on the optimization parameter set s (in our case f (s) 

is the energy and s corresponds to the spherical harmonics coefficients), λ are the  Lagrange 

multipliers and the C(s) the set of constraints. At the solution (s*,λ*) 

the Lagrangian is stationary ( , ) 0L s λ∇ = . 

 

The zeros of these equations are found using Newton’s method by iteratively incrementing s and 

λ by ds and dλ, and solving 

( , )T L ds d Lλ∇∇ = −∇  

 

Supplementary Material (ESI) for Soft Matter
This journal is © The Royal Society of Chemistry 2011



 
Figure S-1|Convergence of total surface area: triangulation vs. Gaussian quadrature. Log-log plot of 

number of surface points vs. percent error in total surface area calculation. The surface used is an 

oblate spheroid and hence with known analytical value for surface area. The surface triangulation 

was generated with subdivisions of the icosahedron. The area is given as the sum of areas of 

individual triangular tiles. Gaussian quadrature base points and weights were generated according 

to6. 
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Figure S-2| Comparison of accuracy of surface area calculations. General and prolate 

ellipsoid surface area calculations using Gaussian quadrature with only 360 base 

points, elliptic integral approximations over several orders and Thomsen's formula.  
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Figure S-3| Sketch of deformation Φ operating on a triangle V producing deformed coordinates. 
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Figure S-4| Examples of echinocyte type 1 shapes showing the top, bottom and side views of 6 

cells. Images were recorded with confocal microscopy using DiI labelling (membrane label) in 250 

mM NaCl solutions. Surfaces were triangulated for visualization using a marching cubes algorithm. 

Out-of-plane spicules can clearly be seen in cells 1, 5 and 6. Bar: 5µm 
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