Supporting Information

Monodisperse Core-shell Chitosan Microcapsules for pH-responsive Burst Release of Hydrophobic Drugs

Li Liu^a, Jian-Ping Yang^a, Xiao-Jie Ju^a, Rui Xie^a, Ying-Mei Liu^a, Wei Wang^a, Jin-Jin Zhang^a, Catherine Hui Niu^b and Liang-Yin Chu^a,*

Move S1. The acid-triggered burst release process of chitosan microcapsules.

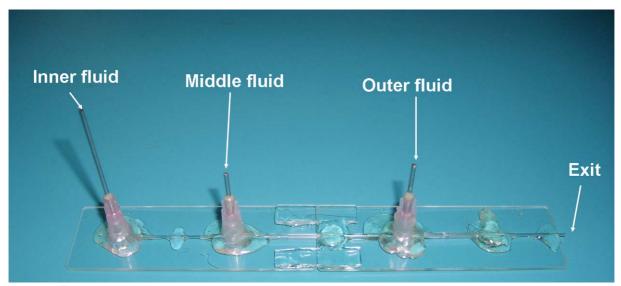
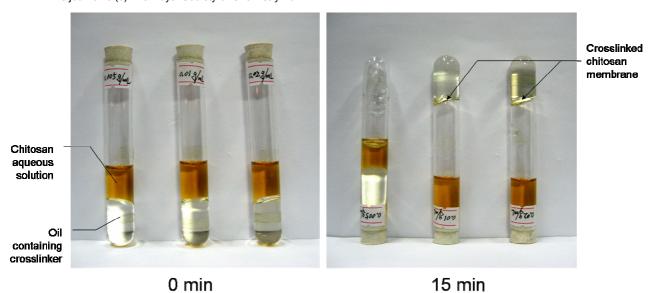


Figure S1. A photo of a microfluidic device.


25

^aSchool of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China. Tel: +86 28 8546 0682; E-mail: chuly@scu.edu.cn

<u>chuly@scu.edu.cn</u>

^bDepartment of Chemical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9

Canada.

Figure S2. Effect of the terephthalaldehyde concentration in the oil phase on the crosslinking reaction at the W/O interface. From the left to the right, the terephthalaldehyde concentrations in the oil phase are 0.005 g/ml, 0.01 g/ml and 0.02 g/ml, respectively.

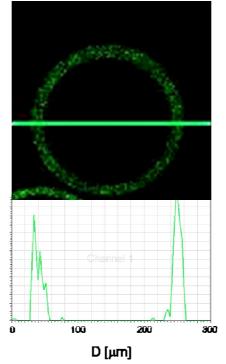


Figure S3. CLSM image of a crosslinked chitosan microcapsule and its fluorescence intensity profile.

10