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Supporting Information

1 Large drop volume regime

As an additional aspect to Fig. 4 in the main text, we have focused on the large drop volume
regime in Fig. S1. The clamshell to barrel branch of the bistability regime curves towards
lower angles. This brings out an interesting feature, which we refer to as reentrant behavior.
At low contact angles and large drop volumes, a drop in the clamshell state can enter the
barrel morphology region by reducing the drop volume. By reducing the volume further
with given contact angle, the drop will enter the bistable regime again and eventually decay
into a clamshell morphology.
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Fig. S1: Morphology diagram of drops on fibers as a function of contact angle 6 and reduced
volume V, extended to large volumes (up to 10%). The solid lines indicate the numerically
determined stability limit of the clamshell (upper red) and the (coinciding) analytically
and numerically determined stability limits of the barrel (lower black). The dotted arrow
indicates a path showing reentrant behavior with decreasing drop volume.

2 Stability analysis of barrel drops

In the absence of gravity, the liquid-vapor interface of an equilibrated barrel drop wetting a
cylindrical fiber is described by segments of Delaunay surfaces which satisfy the condition of
Young-Dupré at the contact line [1, 2, 3]. But not all of the shapes constructed in this way
represent mechanically stable barrel drops [3]. In order to assess the mechanical stability of
the liquid-vapor interface with respect to small variations of its shape, one has to discuss
the second variation of the interfacial energy under appropriate constraints. If the second
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variation is positive for all admissible variations of the interfacial shape the correspond-
ing drop shape is mechanically stable. For further details of the variational calculus, the
parameterization of deformations, and the spectral analysis we refer to Refs. [4, 5].

2.1 Jacobi’s accessory equation

Let A be the liquid-vapor interface of the drop. To assess the mechanical stability of a liquid
drop in the absence of gravity one has to solve the eigenvalue problem [4, 5]

~V+ (2K —4H* )y =X v+p on A (1)

in the normal component of the displacement field v subject to a linear subsidiary condition

/AdAuzo (2)

and boundary conditions

n~V1/+<,Cl—cJ_cot9)1/:O on L. (3)
sin 0

In local coordinates, the Laplace-Beltrami operator on A assumes the general form

VZ= \}gai\/gg” 0; with i,j=1,2.
The Gaussian curvature K = ¢; ¢o and the mean curvature H = (¢1 + ¢2)/2 are the product
and sum, respectively, of the two principal normal curvatures ¢; and ¢, in a point of A, while
c1 and ¢, are the normal curvatures of A and of the substrate surface A, respectively, on
the contact line £ perpendicular to the contact line. The vector n is the outward pointing
conormal of A in a point of L.

The Lagrange parameter A and g have to be chosen such that eqns. (1), (2), and (3) are
simultaneously satisfied. Statements about the stability of a drop are thus equivalent to an
analysis of the eigenvalue spectrum of a linear operator in the subspace of volume conserving
normal displacements. A drop is mechanically stable if the smallest relevant eigenvalue Apiy,
is positive.

Owing to the continuous translational and rotational symmetry of the wetted cylindrical
surface each drop in mechanical equilibrium belongs to a whole family of equilibrium con-
figurations generated by a translation along, or a rotation around the symmetry axis of the
cylinder. Because each state in such a continuous family of shapes has the same interfacial
energy we find Goldstone modes with A = 0 in the volume conserving subspace of variations
provided that translational and/or rotational symmetry of the drop is broken. Hence, the
discussion of eigenvalues and corresponding eigenmodes is restricted to the linear subspace
of modes orthogonal to these Goldstone modes.

2.2 Axially symmetric drops

In the following we assume that the liquid-vapor interface of the drop is a surface of revo-
lution. Hence, the components of the metric tensor g;;, the local surface element ,/g, the
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curvatures ¢y, ¢|, and the Gaussian curvature K do not depend on the azimuthal angle
o and are solely functions of the parameter u along the contour. After a separation of
variables, the displacement field can be written as the product

v(u, ) = plu) XM

bl

and Jacobi’s accessory equation (1) reduces to an ordinary differential equation
—— - — | — | = )| =+ —+2K —-4H =Ap+pu, 4
g1 ®u /g |du \g22 /| du 922 r pH @

with a linearized subsidiary constraint of constant volume

/ du/gp=0, (5)

0

and boundary conditions

L dp
1/g11 du

U = Ug
U =T — Uy

+ cicotp=0 for {
at the contact lines.

2.3 Differential geometry of undoloid drops

Following Refs. [1, 2], we will parameterize the contour of a barrel drop in cylindrical coor-
dinates by undoloids

2,2 :
r3 —r?)cosu sin u ToTi
z =1, E(k,u) + i F(k,u) — (ro — 17) and r= 2 ,
\/7‘3 cos? u + 2 sin® u \/rg cos?u + r? sin®u
with a phase angle u € [ug, ™ — uo] and a modulus k = \/(r2 — r2)/r2. Here, F(k,u) and

E(k,u) denote the elliptic integrals of first and second kind (for a definition of the functions
see, e.g., Ref.[6]) while r, and r; are the largest and smallest distance of the contour from the
symmetry axis. The parameter n in the main text becomes identical to r, after a rescaling
of all lengths by the radius of the fiber, r.

The components of the metric tensor of an undoloid drop can be computed as

2 2,.2
B ToTi(To + 1) d _ o
gll - 2 2 2 12 an 922 - 2 2 2 .2 Y
rsCcostu 4+ risin” u 78 COST U+ i sIn” u

where the indices ¢ = 1, 2 refer to the coordinate v and to the azimuthal angle ¢, respectively.
Because of the parameterization of an axially symmetric surface in cylindrical coordinates
the off-diagonal elements g15 and go1 of the metric tensor are simply zero. The area of the
local surface element of A is given by

r2r2(ro 4+ 11)

(r2 cos? u + 72 sin® u)3

e
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Fig. S2: Dimensionless rescaled eigenvalue Ar2 of the second variation (Jacobi’s accessory
equation) for barrel drops as function of the rescaled volume V. Shown are eigenvalues of
the relevant mode with [ = 0 and m = 1 for different values of the contact angle 6. The
solid lines indicate the numerical solutions of the boundary value problem eqns. (4), (5),
and (6), and the plusses the numerical solutions obtained with Surface Evolver.

The mean and Gaussian curvature on A assume the form

1 ro — ;) (r2cos*u —r2sintu
. i g (e (ot = Fint)
To + 14 r2ri(ro + 1)

respectively, while the normal curvatures parallel and perpendicular to the cylinder axis are
given by
ro cosZu 4 7y sin? u (ro —11) (ro cos?u —r; sin? u)

c| = and c, =— ,
ToTi roTi(To + 71)

respectively. The cosine of the angle o between the surface normal of the liquid-vapor
interface and the radial unit vector reads

To COSZ U + 75 sin® u
cosa = . (7)

\/rg cos? u + r?sin® u

2.4 Inflection point criterion

Due to the reflection symmetry v — @ — u of the undoloid drops and, in consequence,
of equs. (4), (5) and (6), we may consider eigenfunctions p which are either symmetric or
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antisymmetric with respect to the reflection symmetry at v = w/2. Besides this discrete
symmetry, each eigenfunction v can be labeled by its azimuthal node number m and the
number [ of zeroes of the function p(u).

The rigid translation of the liquid-vapor interface perpendicular to the axis of the cylinder
generates a displacement mode

v(u, @) = ™ cos au) (8)

with azimuthal node number m = 1 and longitudinal node number [ = 0. It can be checked
by explicit calculation using eqn. (7) that expression (8) is a solution of Jacobi’s accessory
equation (4) and the volume constraint given by eqn. (5) for any r, and r;. The boundary
condition eqn. (6) is satisfied for undoloid curves with an inflection point located on the
surface of the cylinder. For undoloids the curvature ¢, (u) of the contour has the same sign
as the derivative of p/(u) for 0 < u < 7/2 and opposite sign for 7/2 < u < 7 while p(u) is
non-zero everywhere. Hence, for contact angles 0 < § < 7/2, the boundary condition eqn. (6)
can only be satisfied if ¢ (ug) = 0, i.e., the point ug must correspond to an inflection point of
the drop contour. This finding is corroborated by numerical solutions of the boundary value
problem eqns. (4), (5) and (6). The numerically computed dimensionless rescaled eigenvalue
Ar2 of the mode with [ = 0 and m = 1 as function of the rescaled volume V is displayed in
Fig. S2 for different values of the contact angle . The numerical analysis shows that shapes
without an inflection point are always unstable, while shapes with an inflection point are
always mechanically stable.
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