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SIMULATIONS DESCRIPTION

The algorithm employed in our simulations is based on the
Langevin stochastic equation of motion for each colloidal par-
ticle, as implemented in the LAMMPS program by the so-
called Langevin thermostat http://lammps.sandia.
gov/doc/fix_langevin.html. This method is based
on a mesoscopic description, in which the colloids are simu-
lated explicitly and the solvent molecules are treated implic-
itly. The force over a colloidal particle is given by the sum of
three forces of different origin: (i) the interaction with other
colloids and external fields ~Fc, (ii) the viscous resistance ~Ff

due to the solvent (treated as a continuum media) and (iii) the
thermal fluctuations of the colloid due to collisions with indi-
vidual solvent molecules ~Fr. Then, the equation of motion for
each colloid within this description is given by:

~Fc + ~Ff + ~Fr = m~a. (1)

The force ~Ff is the viscous resistance experienced by the
colloid in the solvent fluid, treated as a continuum medium.
In its simplest version, is proportional to the velocity of the
colloid ~v as given by the Stokes formula:

~Ff = −3πηd~v = −m
τ
~v. (2)

where d is the diameter of the colloid, η is the viscosity of the
solvent. The so-called dumping parameter τ is given by:

τ =
m

3πηd
, (3)

it has units of time and it gives the typical timescale for the
relaxation of the colloid to a stationary state with velocity ~v =
(τ/m)~Fc.

The ~Fr contribution in Eq.(1) takes into account the discrete
nature of the solvent, i.e. it accounts for the collisions between
solvent molecules and the colloid. It is an stochastic or ran-
dom force corresponding to a white noise with zero average
(it does not contribute to the mean velocity or the mean dis-
placement of the colloid, which is purely deterministic). Our
simulation algorithm, as implemented in LAMMPS, makes
use of the fluctuation-dissipation theorem. The value of each
component of ~Fr at a given time is obtained by generating a
random number between -1 and 1 and multiplying it by the
quantity: [

kBTm

τdt

]1/2

, (4)

as described in [1] (dt is the integration time step employed
in the simulation). In this way, the diffusion coefficient gen-
erated by the combined action of the random force and the
friction is given by the Einstein relation:

D =
kBT

3πηd
. (5)

The purely diffusive motion is obtained in absence of external
forces and colloidal interactions (~Fc = 0). In this case, the av-
erage displacement of the particles is zero and the fluctuations
in particle positions obey the diffusive relation:

< r(t)2 >= 6Dt. (6)

Let us now comment on the ~Fc term in Eq.(1), which is the
sum of interaction forces with all other colloids (and external
fields if present). In our case, two different contributions have
been included and can be written as Fc = −∇ULJ −∇Udd.

In order to avoid particle overlapping, and as a first approx-
imation, we have modeled our colloids as soft dipolar spheres
by considering a 6-12 Lennard-Jones potential truncated at
rLJ

c = σp = d:

ULJ = 4εp

[(σp

r

)12

−
(σp

r

)6
]
, r < rLJ

c . (7)

which produces an effect quite similar to hard spheres of di-
ameter σp = d.

The second contribution to the external force is due to the
magnetic dipole-dipole interaction between colloidal parti-
cles. In all the simulations presented in this work, the mag-
netic dipole of each colloidal particle is fixed along a unique
direction with a fixed magnetization corresponding to the sat-
uration magnetization of the superparamagnetic colloids. This
mimics the real situation in which the magnetic moment of
the superparamagnetic particles align along a strong uniform
external magnetic field, with a saturation magnetization Msat.
Then, a magnetic force between colloids arise from the dipole-
dipole interaction with an interaction energy given by:

Udd =
1
r3ij

[
(~pi · ~pj)− 3(~pi · r̂ij)(~pj · r̂ij)

]
. (8)

where ~pi is the dipole corresponding to the i colloid and
~rij is the vector joining the two dipole centers. More de-
tails about how this dipole-dipole interaction is implemented
in LAMMPS can be found at http://lammps.sandia.
gov/doc/pair_dipole.html.
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Definition of dimensionless units in LAMMPS

In simulation is often convenient to rescale our sys-
tem magnitudes to reduced dimensionless quantities. In
the LAMMPS program the only dimensionless option for
units is implemented by the units lj directive http://
lammps.sandia.gov/doc/units.html. The dimen-
sionless quantities are defined as follows. One defines a set of
basic quantities which will be used to convert from dimension-
less units to real units. These basic quantities are: an energy
scale ε0, a length scale σ0 and a unit mass m0. This choice
also fixes the time scale, which is given by:

t0 = σ0

√
m0/ε0. (9)

In a completely equivalent way, one may select three of the
four basic quantities ε0, σ0, m0 and t0 to construct a complete
set and compute the remaining one using Eq.(9). The quan-
tities evaluated in this dimensionless system are denoted here
with a * superscript. Once we have selected our basic unit set,
any other quantity of interest can be written in this new set of
units.

In our case we have selected as the basic scales of our units
system those parameters close to a molecule of water (our im-
plicit solvent). Thus , m0 = 3.0× 10−26 kg, σ0 = 3.0 Å and
ε0 = 2.60 × 10−23 J. With this election, the resulting time
scale is t0 = 1.01× 10−11 s.

SIMULATION PARAMETERS

All the simulations performed in this work can be grouped
in two different sets. A first set of simulations with the same
concentration of magnetic colloids and with different values
of the magnetic strength an a second set in which the colloids
have the same magnetization but they are present in different
concentrations. Tables I and II summarize the values used in
defining these simulations. In table I we present the complete
set of parameters common in all these simulations and in table
II are presented all the parameters involved in the definition of
different magnetic regimes and concentrations.

All the simulations consist of 8000 colloidal dipolar par-
ticles immersed in (implicit) water as a solvent at a constant
temperature of T = 300K. The mass of the colloidal particles
has been chosen to obtain a density close to the water density
at that temperature to avoid any possible sedimentation effect
of the colloidal particles in the simulation.

In the numerical integration of Eq.(1) in time steps of value
dt, we have to keep in mind that the diffusive motion in a
dt should be of a reasonable order of magnitude in order to
produce an observable (but not too large) diffusive motion.
However, the dipolar interactions between colloids can also
cause the particles to overlap in excess. This could produce a
too large repulsive force over the colloidal particles, resulting
in a large velocity (after integration) due to the repulsive part
of the Lennard-Jones potential and leading the system to an

unphysical situation, which could make the integration pro-
cedure to fail. Then, the time step has to be large enough
to reproduce the diffusion of the colloidal particles but small
enough to avoid too large forces between particles whenever
they overlap. In our case, we selected an integration time step
of ∼ 1ns for all simulations where the magnetic interactions
were present.

Regarding the Lennard-Jones interactions, the selected cut-
off have been set to rLJ

c = d = 100nm. In this way, the par-
ticles only interact through this repulsive force when they do
overlap. The Lennard-Jones parameters σp, εp have been set
to obtain a relatively hard sphere colloid, in which the distance
between colloidal particles in contact is close to the original
diameter of the particle (no overlapping).

Since the magnetic dipole-dipole interaction is a relatively
long range force (∼ 1/r3) its computation is one of the most
time consuming parts in these simulations. Unfortunately,
there is no available method in LAMMPS package that could
be applied to reduce the computing time when accounting for
this interactions (similar to the Ewald summation method used
to compute the electrostatic interactions in charged systems).
Then, we evaluated this interaction by direct summation of
the forces in the real space, but limited to a certain region
surrounding the particle defined with a cutoff (rdd

c ). The se-
lected cutoff for all simulations is ten times the particle diam-
eter rdd

c = 10d which results, in the worst case, in an error in
the magnetic energy per particle smaller than 0.05kBT ( see
table II).

TABLE I: Common simulation parameters for all simulations. The
simulations units have been obtained by rescaling the real values us-
ing the basic units set presented in the previous section.

Parameter real units sim. units∗

T 300 K 159

mp 5.24−19 Kg 1.75 × 107

τ 55.6 ns 54.9

dt 1.01× 10−9 s 100

σLJ 100 nm 333.3

εLJ 1.30× 10−20 J 500

rLJ
c 100 nm 333.3

rdd
c 1 µm 3333.3

SIMULATION ANALYSIS

We started the simulations by placing the 8000 particles fol-
lowing a cubic lattice arrangement inside the simulation box.
The lattice constant was set according to the initial volume
fraction φ0 desired in each case. Then, the system was equili-
brated at T = 300K with the magnetic interactions switched
off for a total simulation time of 0.1 s, with an integration time
step of 1.01×10−10 s. In this situation, the expected diffusion
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TABLE II: Simulation parameters for the two sets of simulations presented in this work.

Sim-ID Γ φ Msat magnetic dipole axis box length −Edd(r
dd
c )

- - - [emu/g] [×10−17J/T] [*] [µm] [*] [kBT ]
1 3 0.52× 10−3 15.1 0.79 94075 20.0 66666.7 0.3 × 10−2

2 10 0.52× 10−3 27.5 1.44 171756 20.0 66666.7 1.0 × 10−2

3 10 1.05× 10−3 27.5 1.44 171756 15.7 52913.4 1.0 × 10−2

4 10 2.62× 10−3 27.5 1.44 171756 11.7 38986.9 1.0 × 10−2

5 10 5.23× 10−3 27.5 1.44 171756 9.3 30943.9 1.0 × 10−2

6 11 0.52× 10−3 28.8 1.51 180139 20.0 66666.7 1.1 × 10−2

7 12 0.52× 10−3 30.1 1.58 188149 20.0 66666.7 1.2 × 10−2

8 15 0.52× 10−3 33.7 1.76 210358 20.0 66666.7 1.5 × 10−2

9 40 0.52× 10−3 55.0 1.58 343512 20.0 66666.7 4.0 × 10−2

coefficient for the colloids can be evaluated from the expres-
sion 5. In the other hand, this diffusion coefficient can be also
obtained from simulation by evaluating the mean squared dis-
placement (msd) calculated through the expression 6. In the
case of φ0 = 5.23 × 10−4 the diffusion coefficient obtained
from simulation is Dsim = 4.29× 10−12m2s−1 (the fitting is
shown in figure 1). As it was expected, this value does agree
with the theoretical value Dtheory = 4.39× 10−12m2s−1 pre-
dicted through relation 5.
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FIG. 1: Mean squared displacement obtained from simulation with-
out magnetic interactions. In this case, the volume fraction was set to
φ0 = 5.23×10−4 and the diffusion coefficient was obtained through
the expression 6.

Once the system was equilibrated without the magnetic in-
teractions, we used the last configuration obtained to restart
the simulations but with the magnetic interactions switched
on. These simulations were run for a total time between 1 and
3 s, depending on the simulation.

Some thermodynamical quantities such the potential en-
ergy, kinetic energy, etc. were stored in order to ensure the
good performance of the simulation. Moreover, we have
stored for each simulation the configuration of the system (po-
sitions, velocities, etc...) every 0.51 ms in real time (equiv-

alent to store it every 500000 time steps). These files have
been used to calculate any other quantity of interest presented
in this work, such as the distribution of aggregates, the mean
chain length, etc.

In order to quantify the aggregation phenomena found in
the simulations, we had to define a criteria for the aggregation
of two colloidal particles. According to typical experimental
resolution in image processing techniques used to analyze the
aggregating phenomena in such systems [3] we have defined
a contact distance between colloids (i.e. the distance at which
two colloids are joined together) as dc ≡ 1.15d. With this
selection, we got a good compromise between the statistical
noise and the computed number of aggregates.

Prior to evaluate any equilibrium quantity from the sim-
ulations, we had to identify when our system was reaching
equilibrium. By analyzing the time evolution of the poten-
tial energy, we could define a time interval in which we can
assume that the system has -with reasonable approximation-
reached an equilibrium state. In figure 2 the time evolution of
the potential energy is shown for different simulations and ta-
ble III summarizes the different selected ranges corresponding
to each simulation.

TABLE III: Different time intervals and number of samples used
when calculating the average chain length from simulations. These
time intervals have been selected according to the time evolution of
the potential energy, shown in figure 2 and the time evolution of n̄
shown in Figs. 2-3 in the main paper.

Sim-ID Γ tmin tmax samples n̄ error (2σ)
- - [s] [s] - [particles] [particles]
1 3 0.5 1.0 1000 1.00217 0.00005
2 10 1.0 2.0 2000 1.6814 0.0006
3 10 1.2 2.0 1600 2.614 0.001
4 10 1.2 1.7 1000 4.742 0.006
5 10 0.7 1.2 1000 6.77 0.01
6 11 1.8 2.0 400 3.238 0.003
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FIG. 2: Potential energy time evolution for all simulations. Different
Γ values and φ0 = 5.23×10−4 (top panel) and Γ = 10 and different
volume fractions (bottom panel).

We have also computed the average particle density func-
tion around each colloid (i.e. the colloid-colloid correlation
function), Figure 3. In this figure the finite size of the colloids
can be clearly appreciated (the density vanishes for separa-
tions smaller than the colloid size). Also, it shows how the
colloids arrange themselves in chains in the z axis, with small
fluctuations around the contact position. These details are also
clearly observed in the accompanying movies.

FINITE SIZE EFFECTS AND CUTOFF ANALYSIS

Here let us emphasize that finite size effects, effects of cut-
off and in general the effect of long range interactions has been
considered in detail prior to perform our production runs. We
have considered simulations with 1000, 8000 and 10000 par-
ticles as well as cut-off values from 10 to 5 times the diameter
of the colloids and different values for the radius of the neigh-
bor list.

As an example, we show here the results form the same
simulation employing four different schemes with the pa-
rameters indicated in the Table IV. The meaning of the
parameters is as follows: cutoff is the cut off of the magnetic
interactions as explained before, “every” indicates a build
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FIG. 3: Average particle density function corresponding to Γ = 10
and φ0 = 5.23 × 10−4. The evaluation has been carried out by
averaging the last 1000 configurations corresponding to the last 0.5
s of simulation.

of neighbor list every this many steps, “page” indicates the
number of pairs stored in a single neighbor page, “one” the
maximum number of neighbors of one atom. The “page”
and “one” options affect how memory is allocated for the
neighbor lists and, though the default settings are fine for most
simulations is recommended to boost them when dealing with
large systems and/or large cut-off values. More information
about the neighbor list algorithm and parameters optimized
here can be found at:
http://lammps.sandia.gov/doc/neighbor.
html
http://lammps.sandia.gov/doc/neigh_
modify.html.

scheme cutoff [σ] every one page steps/s

A 10 500000 5000 50000 2217
B 5 500000 5000 50000 3384
C 5 50000 500 5000 2598
D 5 10000 500 5000 2872

TABLE IV: Summary of schemes used in different test simulations
to check the overall performance of the simulations and the effects
of different cutoff and neighbor list parameters. The average com-
puting velocity for each scheme has been calculated as the number
of simulation steps over the total elapsed time.
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FIG. 4: Potential energy as a function of time (top) and mean num-
ber of colloid per aggregate (bottom) obtained considering a contact
distance of 108nm.

These test simulations were performed using 1000 colloids,
Γ = 10 and φ0 = 5.23 × 10−4 using a 4-processors grid in
parallel. The results (Figure 4) show that a reduction of the
employed cut off to half the value employed in the production
runs does not affect the obtained results. Hence, the choice of
this parameter is not as critical as one may think provided that
one selects a value giving a truncation error in the magnetic
energy much smaller than the thermal energy (as always is in
our simulations, see Table II. In spite of this, our choices were
highly conservative and we always employed in the produc-
tion runs large cut off to minimize numerical errors in spite
of the extremely high computational time required by these
calculations.

The comparisons shown in Figure 4 and Table III also
demonstrate that the simulation time depends crucially on the
combination of the different parameters controlling the neigh-
bors list, without affecting the precision of the results.
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