Electronic supplementary information

Instrumentation

Sedimentation velocity experiments.

The raw sedimentation data were evaluated by the program Sedfit using continuous c(s), which is based on the numerical resolution of 5 the Lamm equation. It allows the least-squares boundary modeling $ls - g^*(s)$, which describes sedimentation of a non-diffusing species, and to determine the average frictional ratio (f/f_{sph}) of the particles.^{1,2} The partial specific volume v was determined by the density variation method, *i.e.*, by sedimentation velocity experiments on the nanoparticle suspensions, using in parallel H₂O and D₂O. The partial specific volume was found to be $v = (0.78 \pm 0.01) \text{ cm}^3 \cdot \text{g}^{-1}$. Molar masses of the particles were estimated applying the modified Svedberg equation:

 $10 M_s = 9\pi \sqrt{2} N_A \sqrt{[s]^3 v}$

where N_A is the Avogadro's number, v the partial specific volume and [s] is the intrinsic sedimentation coefficient which is defined as:

$$[s] = \frac{s\eta_0}{(1-v\rho_0)}$$

where s_0 is the sedimentation coefficient at zero concentration, η_0 the dynamic viscosity of the solvent, and ρ_0 the density of 15 the solvent. The diameters were calculated from the Stokes approximation for a sphere:

 $d = 3\sqrt{2}\sqrt{[s]v}$

Notes and references

- 1. P. Schuck, Biophys. J., 2000, 78, 1606-1619.
- 2. P. Schuck, P. Rossmanith, Biopol., 2000, 54, 328-341.
- 20 3. W. G. Martin, W. H. Cook, C. A. Winkler, Can. J. Chem., 1956, 34, 809-814.
 - 4. W. Maechtle, Makromolekulare Chemie-Macromolecular Chemistry and Physics, 1984, 185, 1025-1039.

25

Fig. 1 Chemical structure of the polymers. A - p(MMA-stat-MAA)_{2:1}, B - poly(lactic-co-glycolic acid) (50:50), C - dextran acetal (DS = 2.17).

Fig. 2 Size distributions of the nanoparticles at different solvent/non-solvent ratios. The distributions were obtained by sedimentation velocity analysis. 5 The values of the solvent/non-solvent ratio were 0.280 (A), 0.157 (B), and 0.099 (C). The polymer concentration was 3.57 mg·mL⁻¹. The particles were prepared by dropping the polymer solution into water.

Fig. 3 SEM images of nanoparticles prepared from A) ac-dex and B) PLGA at different polymer concentrations. The particles were prepared by dropping the polymer solution into water.

Table 1	Summary of	analytical	data for p(MMA	-stat-MAA)2:1	particles
---------	------------	------------	----------------	---------------	-----------

C,	sol/n-sol	d _{DLS} ,	d _{AUC} ,	PDI	%Pd _{DLS}	M _s ×10 ⁻⁶ ,	ξ,	ρ,	η,
mg∙mL ⁻¹	ratio	nm	nm			g·mol ⁻¹	mV	g∙cm ⁻³	cP
	0.099	46	25	1.05	14.1		-(17±7)	0.9979	1.0218
1	0.157	44	25	1.06	16.0	6.2	-(22±4)	0.9978	1.0236
	0.280	42	25	1.04	15.1		-(31±7)	0.9978	1.0220
	0.099	71	43	1.12	25.6		-(44±5)	0.9979	1.0234
3.53	0.157	74	45	1.11	26.0	37	-(59±6)	0.9979	1.0238
	0.280	70	45	1.11	25.2		-(49±3)	0.9980	1.0230
	0.099	240	130	1.19	31.0		-(63±1)	0.9981	1.0292
9.67	0.157	240	130	1.18	35.4	1300	-(62±1)	0.9980	1.0312
	0.280	260	150	1.20	38.9		-(65±1)	0.9983	1.0468

 $^{*}\rho$ denotes the density and η the viscosity of the nanoparticle suspensions

Table 2 Summary of analytical data for ac-dex and PLGA particles

Polymer	C,	d _{DLS} , Platereader	%Pd _{DLS} Platereader	d _{DLS} , Zetasizer	%Pd _{DLS} Zetasizer	ξ,	-5
	mg∙mL ⁻¹	nm		nm		mV	
	1	78	14.3	112	22.5	-(16±11)	_
ac-dex	3.5	108	17.8	138	20.2	-(16±14)	
	10	142	25.2	172	22.2	-(22±10)	
	1	52	14.9	78	18.2	-(14±14)	
PLGA	3.5	88	16.9	89	16.4	-(22±12)	
	10	148	22.2	132	23.5	-(22±12)	10

Table 3 Slope and best fit coefficient obtained from the linear fit of the mean particle size vs initial concentration plots

Sample	slope [*]	slope ^{**}	slope	\mathbf{r}^2
m(MMA stat MAA)	0.44 ^a	1.01 ^a	0.66 ^b	0.98 ^a
$p(\mathbf{WIWIA}-stat-\mathbf{WIAA})_{2:1}$				0.94^{b}
PLGA	_	_	0.44	0.99
ac-dex	_	_	0.21	0.93

*Linear fit for the data in the $1 - 6 \text{ mg} \cdot \text{mL}^{-1}$ range of concentration. **Linear fit for the data in the $6 - 10 \text{ mg} \cdot \text{mL}^{-1}$ range of concentration. Linear fit through all data points.

15_____