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Movie S1: Evaporation of water droplets containing 8 m glass microspheres and 3 

wt% silica nanoparticles. This movie corresponds to the data in Fig. 1(a) & 1(b). Top 

panel: Drying of the drop filmed from the side. Bottom panel: Drying of the drop 

filmed at identical time points from the bottom. The droplet depins at about 33 s, and 

shortly thereafter, all microspheres move towards the center of the drop. The sphere at 

the edge of the drop has a larger maximum velocity. At about 42 s, the contact line 

repins. 

 

Movie S2: Evaporation of 0.1 M NaCl droplets containing 8 m glass microspheres 

and 3 wt% silica nanoparticles. This movie corresponds to the data in Fig. 1(c). Top 

panel: Drying of the drop filmed from the side. Bottom panel: Drying of the drop 

filmed at identical time points from the bottom. The contact line in this drop does not 

depin and the microspheres do not move.   
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Movie S3: Evaporation of water droplets containing 8 m glass microspheres and no 

silica nanoparticles. This movie corresponds to the data in Fig. 1(d). Top panel: 

Drying of the drop filmed from the side. Bottom panel: Drying of the drop filmed at 

identical time points from the bottom. When the receding contact line reaches a 

microsphere it transports the microsphere. Only the spheres at the contact line begin 

moving.  

 

Effect of concentration of large diameter (10 nm) nanoparticles on microsphere 

speed: The effect of concentration of large (10 nm), nanoparticles on microsphere 

speed is similar to the smaller (5 nm) nanoparticles [Fig. 3(a)], though less 

pronounced. Microsphere speed decreases with increasing concentration of 

nanoparticles [Fig. S1],  

 

FIG. S1. Mass transport speed depends on nanoparticle concentration. Microsphere 

speed decreases as the concentration of 10 nm nanoparticles increases 
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Internal Circulation and Flow in the Drops 

Impulsive velocity changes due to successive pinning-depinning of the contact-line 

drive acoustic waves into the droplet and establish a circulating fluid flow. The 

acoustic waves accelerate the toroidal circulation in the droplet until a balance 

between energy input and viscous dissipation is reached. The rate of energy input 

is RvR2 , i.e., the work done by the surface tension force per unit time, where R is 

the radius of the drop and Rv  is the contraction speed. The rate of energy dissipation 

can be estimated as, 
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where  is an efficiency factor, the first term in the left hand expression is the kinetic 

energy of circulation and the second bracketed expression is the circulation turnover 

timescale. The velocity vcirc is the average circulation velocity over the whole mass of 

the droplet, md. Setting the energy input equal to the dissipation estimate of Eq. 1 we 

get, 
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In this equation Rv  is the edge contraction velocity.  

 

To make quantitative estimates of the microsphere speed and acceleration, we begin 

by considering the acceleration of the spheres by the flowing fluid. This is described 

by the classical Stokes equation,  

Electronic Supplementary Material (ESI) for Soft Matter
This journal is © The Royal Society of Chemistry 2011



4 

 

 
d

flow

flow

s

s
vv

vv
m

R

dt

dv



 





6
     (3) 

where v is the microsphere velocity, flowv  is the speed of the background fluid, ms, Rs 

are the mass and radius of the microsphere, and  is the fluid viscosity coefficient. 

The factor d is the drag timescale or the microsphere acceleration timescale.  

 

The Stokes equation is usually used in the context of a constant velocity fluid flow, 

but while energy is input, and before the input/dissipation balance of Eq. 2 is reached, 

the circulation is accelerated. Specifically, if we assume that all the input energy goes 

into the kinetic energy of the circulation, we can describe the acceleration as, 
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where K is the kinetic energy of the circulation, and Ro is the (initial) radius of the 

droplet at the start of this phase. An expression for vcirc as a function of time can be 

derived with the substitution, tvRR Ro  . The result can be written,  
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with Ro vR /1  , and vf given by Eq. 3 above. Note that when t = , then vcirc =vf, 

and so vf is the “final” velocity.  

 

The pinning-depinning events work cumulatively against drag described by Eq. 3. 

Thus, we can identify vcirc with vflow and substitute Eq. 5 into Eq. 3, yielding 
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This differential equation has a smooth and slowly varying solution that is 

numerically integrable.  It has a solution of the form,  
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where retaining terms of order n yields a solution accurate to order (t/1)
n-1

. 

 

The circulating fluid flow reaches a balance when the energy input equals viscous 

dissipation. The simplest approximation for the circulation flow along a radius in the 

droplet is a quadratic function of the form, v = b – a(r –rmax)
2
, where a and b are 

constants, and rmax is the radius where the circulation is the most horizontal. For a 

fluid element initially located at some r > rmax, and which subsequently travels to the 

center, we adopt the boundary conditions: v = 0 at r = 0, and v = vmax at r = rmax. Then 

the velocity profile of the radial component of the circulation can be written as, 
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This equation can be integrated to obtain, 










 











 



max

max

max

max

max )(2
exp1

)(2
exp2





tt

tt

r

r
    (9) 

where we have integrated from some arbitrary time t along the trajectory to the time 

tmax when r = rmax. The timescale max = rmax/vmax. Eq. 9 can be substituted into Eq. 8 

to obtain the dependence of fluid element velocity on time, 
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The net flow of a microsphere is a combined response to the driving forces of the 

accelerating (Eq. 7) and balanced (Eq. 10) circulation, mediated by the Stokes drag.  

Eq. 10 was derived to describe the fluid flow near bottom of the droplet. The fact that, 

with the right set of parameter values, it fits the peak of the microsphere speed vs. 

time data (Fig. 1(b)) means that the spheres’ generally slower motion and delayed 

response due to damping is well approximated by the same function form.  

 

Based on these considerations we adopt a simple model for the spheres motion 

consisting of the sum of the contributions from Eqs. 7 and 10, 
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The subscript max in Eq. 10 (for the fluid flow), has been replaced with subscript a 

for a microsphere.  

 

Estimating depinning time and energy released by contact line hopping  

The contact line hops much faster that the time required for an acoustic pulse to travel 

from the edge to the center of the drop. The energy released by a single 

depinning-pinning cycle is given by 
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where R is the distance moved by the contact line. This event drives a mass of 

fluid, RhR2 , inwards with a velocity  . The velocity of the fluid flow depends 

on the height of the depinned fluid column; it has maximum velocity
gleRsin

  at the 

contact line and decays rapidly with height reaching zero velocity at the top of droplet 

h1. Assuming that the velocity decays linearly with h, the energy due to inward fluid 

flow is given by 
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Setting this equal to the energy released by a single depinning-repinning cycle, we get 
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For γ = 0.073 N/m and h1 ~ 100 μm, 
gleRsin

 = 2.1 m/s. It is important to note that this 

calculated value corresponds to the contact line velocity of a single 

depinning-repinning cycle and not R which is the average contact line velocity over 

the entire series of pinning-depinning events (Fig. 1b). Furthermore, 
gleRsin

 is likely 

underestimated in this calculation since the velocity of fluid flow decreases more 

rapidly with height than described by a simple linear relationship.  

 

Once the contact line depins, it will be repinned again at the next line of the 

nanoparticles; R is therefore approximately the diameter of the nanoparticles. The 

depinning-repinning time interval ns
sm

nm
t timecontact 5.2

2

5
 . However, the time for 

the acoustic wave to travel from the edge of the droplet to the center of drop can be 
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estimated to be s
soundofspeed

R
tacoustic 3.0 . Since tcontact line is much smaller 

than tacoustic, impulsive velocity changes due to successive pinning-depinning of the 

contact-line can drive acoustic waves into the droplet and establish a circulating fluid 

flow.  

 

There is enough energy contained in the entire series of pinning-depinning cycles to 

drive the circulatory fluid flow. The kinetic energy required to drive all the fluid in the 

droplet with R ~ 500 μm into a circulating flow with vcirc ~100 μm/s (Figure 1b), can 

be estimated as J
hRm circcircd 16
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. On the other hand, the energy 

input due to the entire series of pinning-depinning cycles across the gel foot (R ~ 

100 μm) is given by JRR 81022   ; this energy is much larger than the energy 

needed to establish the circulatory fluid flow. 
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