Supplementary information :
Viscoelastic SFSR spectra

1 Introduction

The problem is to find approximations for the integral

$$
\begin{equation*}
S(\omega)=-\frac{C}{\omega} \int_{0}^{\infty} k^{3} \operatorname{Im}(\chi(\omega ; k)) e^{-\frac{k^{2} R^{2}}{c}} d k \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1}{\chi(\omega ; k)}=\sigma k^{2}+\frac{G^{2} k^{3}}{\omega^{2} \rho}\left[4 \sqrt{1-\frac{\omega^{2} \rho}{k^{2} G}}-\left(2-\frac{\omega^{2} \rho}{k^{2} G}\right)^{2}\right] \tag{2}
\end{equation*}
$$

C is a constant for the experiment and the notations $G=G^{\prime}+i G^{\prime \prime}=$ $|G| \exp (i \delta)$ are used. It is convenient to introduce the reduced variables

$$
\begin{align*}
\omega^{*} & =c^{3 / 4} \sqrt{\frac{\sigma}{\rho R^{3}}} \tag{3}\\
|G|^{*} & =c^{1 / 2} \frac{\sigma}{R} \tag{4}\\
\Omega & =\frac{\omega}{\omega^{*}} \tag{5}\\
\Gamma & =\frac{|G|}{|G|^{*}} \tag{6}
\end{align*}
$$

and to analyse the behavior of the integral (1) in the plane, (Ω, Γ) as these parameters vary easily over orders of magnitude while the surface tension σ does not vary much.

As intermediate parameters, one define

$$
\begin{align*}
& \varepsilon=\frac{\Omega}{\Gamma^{1 / 2}} \tag{7}\\
& \beta=\frac{\Gamma^{3 / 2}}{\Omega} \tag{8}
\end{align*}
$$

Then

$$
\begin{equation*}
S(\omega)=-C \frac{\omega \rho R^{2}}{\sigma|G|} \operatorname{Im} \int_{0}^{\infty} \frac{x e^{-\varepsilon^{2} x^{2}}}{1+\beta \psi(x)} d x \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(x)=x e^{2 i \delta}\left[4 \sqrt{1-\frac{e^{-i \delta}}{x^{2}}}-\left(2-\frac{e^{-i \delta}}{x^{2}}\right)^{2}\right] \tag{10}
\end{equation*}
$$

2 Discussion

The problem is to find approximations of

$$
\begin{equation*}
J=\int_{0}^{\infty} \frac{x e^{-\varepsilon^{2} x^{2}}}{1+\beta \psi(x)} d x \tag{11}
\end{equation*}
$$

for different values of the parameters ε and β. As the imaginary part of J is sought, the leading non purely integer contribution to J is noted J^{\prime} (more generally the prime symbol is used in the following to express the leading non purely integer term). One may notice the asymptotic behaviors :

$$
\begin{align*}
\psi(x) & \simeq-x^{-3}+4 e^{i \delta} x^{-1}+O\left(x^{0}\right) \text { for } x \rightarrow 0 \tag{12}\\
& \simeq 2 e^{i \delta} x^{-1}+O\left(x^{-3}\right) \text { for } x \rightarrow \infty \tag{13}
\end{align*}
$$

(in these developments, the first non-real term is kept).
The rigorous uniform asymptotics analysis of equ. (11) with respect to both parameters ε and β is rather cumbersome. The description given below is based on the following remark : except in a very narrow region near $x=1$, one can approximate the function $\psi(x)$ by the above asymptotic behavior (14) and (15), respectively for $x<1$ and $x>1$:

$$
\begin{align*}
\psi(x) & \simeq-x^{-3}+4 e^{i \delta} x^{-1} \text { for } x<1 \tag{14}\\
& \simeq 2 e^{i \delta} x^{-1} \text { for } x>1 \tag{15}
\end{align*}
$$

Hence, to evaluate the quantity $1+\beta \psi(x)$, it is convenient to define x^{*} as the solution ${ }^{1}$ of $\left|\psi\left(x^{*}\right)\right|=\beta^{-1}$. For $\beta \ll 1$, one find $x^{*} \simeq \beta^{1 / 3}$ and for $\beta \gg 1, x^{*} \simeq 2 \beta$. In both cases,

$$
\begin{align*}
& \beta|\psi(x)| \ll 1 \text { for } x \gg x^{*} \tag{16}\\
& \beta|\psi(x)| \gg 1 \text { for } x \ll x^{*} \tag{17}
\end{align*}
$$

Moreover, the Gaussian factor imposes the practical integration region in equ. (11) : only the points $0<x<\varepsilon^{-1}$ contributes to the integral. Then, one can discuss several situations according to the values of the parameters.

$2.1 \varepsilon \gg 1$ or $\Gamma \ll \Omega^{2}$

In the case $\varepsilon \gg 1$, the development (14) is relevant to represent ψ as the contributions arising from $x>1$ are negligible. Then $x^{*} \simeq \beta^{1 / 3}$. It remains to compare both scales $\beta^{1 / 3}$ and ε^{-1}

[^0]2.1.1 $\beta \varepsilon^{3} \gg 1$ or $\Omega>1$

Here, $x^{*} \gg \varepsilon^{-1}$, then the term 1 is everywhere negligible as compared to $\beta \psi(x)$. Then, the integral for J can be simplified :

$$
\begin{align*}
J & \simeq-\frac{1}{\beta} \int_{0}^{\infty} \frac{x^{4} e^{-\varepsilon^{2} x^{2}}}{1-4 x^{2} e^{i \delta}} d x \tag{18}\\
& \simeq-\frac{1}{\beta} \int_{0}^{\infty} x^{4}\left(1+4 x^{2} e^{i \delta}\right) e^{-\varepsilon^{2} x^{2}} d x \tag{19}
\end{align*}
$$

and thus the leading non real term is

$$
\begin{equation*}
J^{\prime} \simeq-\frac{15 \sqrt{\pi}}{4} e^{i \delta} \varepsilon^{-7} \beta^{-1} \tag{20}
\end{equation*}
$$

2.1.2 $\beta \varepsilon^{3} \ll 1$ or $\Omega<1$

Here, the complete denominator term has to be used

$$
\begin{align*}
J & \simeq \frac{1}{\beta} \int_{0}^{\infty} \frac{x^{4} e^{-\varepsilon^{2} x^{2}}}{\frac{x^{3}}{\beta}-1+4 x^{2} e^{i \delta}} d x \tag{21}\\
& \simeq \frac{\beta^{2 / 3}}{3} \int_{0}^{\infty} \frac{v^{2 / 3} \exp \left(-\varepsilon^{2} \beta^{2 / 3} v^{2 / 3}\right)}{v-1+4 \beta^{2 / 3} e^{i \delta} v^{2 / 3}} d v \tag{22}
\end{align*}
$$

As in this region $\beta \ll 1$, a pole at $v \simeq 1$ exists just below the integration path. It gives rise to the leading non-real contribution to the integral :

$$
\begin{align*}
J^{\prime} & \simeq \frac{i \pi}{3} \beta^{2 / 3} \exp \left(-\varepsilon^{2} \beta^{2 / 3}\right) \tag{23}\\
& \simeq \frac{i \pi}{3} \beta^{2 / 3} \tag{24}
\end{align*}
$$

$2.2 \varepsilon \ll 1$ or $\Gamma \gg \Omega^{2}$

A decomposition of the integral (11) can be written as :

$$
\begin{align*}
J & =\int_{0}^{1} \frac{x d x}{1+\beta\left(-x^{-3}+4 e^{i \delta} x^{-1}\right)}+\int_{1}^{\infty} \frac{x e^{-\varepsilon^{2} x^{2}} d x}{1+2 \beta e^{i \delta} x^{-1}} \tag{25}\\
& =J_{-}+J_{+} \tag{26}
\end{align*}
$$

(the Gaussian term is dropped in the first integral as it is nearly equal to $1)$. To simplify further the problem, one may compare x^{*} and 1 :
2.2.1 $\beta \ll 1$ or $\Gamma \ll \Omega^{2 / 3}$

When $\beta \ll 1$, one have $0<x^{*}<1$ and the calculation of the first integral is similar to equ. (21),

$$
\begin{equation*}
J_{-}^{\prime} \simeq \frac{i \pi}{3} \beta^{2 / 3} \tag{27}
\end{equation*}
$$

In the second integral, $2 \beta x^{-1} \ll 1$,

$$
\begin{equation*}
J_{+} \simeq \int_{1}^{\infty} x\left(1-2 \beta e^{i \delta} x^{-1}\right) e^{-\varepsilon^{2} x^{2}} d x \tag{28}
\end{equation*}
$$

and thus

$$
\begin{align*}
J_{+}^{\prime} & \simeq-2 \beta e^{i \delta} \int_{1}^{\infty} e^{-\varepsilon^{2} x^{2}} d x \tag{29}\\
& \simeq-\sqrt{\pi} \beta \varepsilon^{-1} e^{i \delta} \tag{30}
\end{align*}
$$

Finally,

$$
\begin{equation*}
J^{\prime} \simeq \frac{i \pi}{3} \beta^{2 / 3}-\sqrt{\pi} \beta \varepsilon^{-1} e^{i \delta} \tag{31}
\end{equation*}
$$

Amplitude of both terms is similar when $\beta \simeq \varepsilon^{3}$, i.e. when $\Gamma=\Omega^{4 / 3}$, then

$$
\begin{align*}
J^{\prime} & \simeq \frac{i \pi}{3} \beta^{2 / 3} \text { for } \Gamma<\Omega^{4 / 3} \tag{32}\\
& \simeq-\sqrt{\pi} \beta \varepsilon^{-1} e^{i \delta} \text { for } \Gamma>\Omega^{4 / 3} \tag{33}
\end{align*}
$$

2.2.2 $\beta \gg 1$ or $\Gamma \gg \Omega^{2 / 3}$

Here, $x^{*}=2 \beta \gg 1$. To evaluate J_{-}, one can consider that the term 1 in the denominator is negligible, just as in eq. (18) :

$$
\begin{equation*}
J_{-} \simeq-\frac{1}{\beta} \int_{0}^{1} \frac{x^{4}}{1-4 x^{2} e^{i \delta}} d x \tag{34}
\end{equation*}
$$

and thus

$$
\begin{equation*}
J_{-}=O\left(\beta^{-1}\right) \tag{35}
\end{equation*}
$$

After splitting J_{+}into two terms

$$
\begin{equation*}
J_{+}=\int_{1}^{x^{*}} \frac{x e^{-\varepsilon^{2} x^{2}} d x}{1+2 \beta e^{i \delta} x^{-1}}+\int_{x^{*}}^{\infty} \frac{x e^{-\varepsilon^{2} x^{2}} d x}{1+2 \beta e^{i \delta} x^{-1}} \tag{36}
\end{equation*}
$$

a simplification of the integrals takes place when leading terms are kept :

$$
\begin{align*}
& J_{+} \simeq \frac{e^{-i \delta}}{2 \beta} \int_{1}^{2 \beta} x^{2} e^{-\varepsilon^{2} x^{2}} d x+\int_{2 \beta}^{\infty} x\left(1-2 \beta e^{i \delta} x^{-1}\right) e^{-\varepsilon^{2} x^{2}} d x \tag{37}\\
& J_{+}^{\prime} \simeq 4 \beta^{2}\left[e^{-i \delta} \int_{0}^{1} t^{2} e^{-z^{2} t^{2}} d t-e^{i \delta} \int_{1}^{\infty} e^{-z^{2} t^{2}} d t\right] \tag{38}
\end{align*}
$$

where $z=2 \beta \varepsilon=2 \Gamma$ and the lower limit for the first integral has been extended down to 0 without changing appreciably its value. Now, two situations are to be discussed :

- For $\Gamma \gg 1$ the first integral dominates. Watson lemma leads to the result

$$
\begin{equation*}
J_{+}^{\prime} \simeq \frac{\sqrt{\pi} e^{-i \delta}}{8 \beta \varepsilon^{3}} \tag{40}
\end{equation*}
$$

- For $\Gamma \ll 1$ the second integral dominates and gives

$$
\begin{equation*}
J_{+}^{\prime} \simeq-\frac{\sqrt{\pi} \beta e^{i \delta}}{\varepsilon} \tag{41}
\end{equation*}
$$

In both cases the J_{-}contribution is negligible, thus

$$
\begin{align*}
& J^{\prime} \simeq \frac{\sqrt{\pi} e^{-i \delta}}{8 \beta \varepsilon^{3}} \text { for } \Gamma \gg 1 \tag{42}\\
& \simeq-\frac{\sqrt{\pi} \beta e^{i \delta}}{\varepsilon} \text { for } \Gamma \ll 1 \tag{43}
\end{align*}
$$

3 Results

Results obtained for the different regions can be collected in the plane (Ω, Γ). The figure below gives a summary of the results in this plane.

Figure 1 - Asymptotic behaviors for the SFSR spectrum in the plane $(\log \Gamma, \log \Omega)$.

[^0]: 1. When the sample is rather elastic, other solutions may exist near $x=1$. They correspond to the Rayleigh elastic waves. They are not expected to give important contribution to the spectrum.
