Electronic Supplementary Information

Synthesis of Composite Microgel Capsules by Ultrasonic Spray Combined with in situ Crosslinking

Lingling Zhao¹, Lijun Zhu¹, Qian Wang¹, Jiaoli Li¹, Chengliang Zhang¹, Jiguang Liu¹,

Xiaozhong Qu¹*, Guanglong He², Yunfeng Lu³ and Zhenzhong Yang¹*

¹State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. ²Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA. ³Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, CA 90095, USA.

*Corresponding authors. Email: yangzz@iccas.ac.cn, quxz@iccas.ac.cn

Scheme S1 Illustration of the process for synthesizing Fe₃O₄ nanoparticle and LiPc microcrystal loaded microgel capsules.

Figure S1 DLS diagram of GC/OHC-PEG-CHO gel capsules prepared from 0.5 wt% polymer solution with an OHC-PEG-CHO feed ratio of 0.2 mol/mol. The concentration used for the DLS measurement was 2 mg/mL.

Figure S2 Enlarged ¹H NMR spectra of GC/OHC-PEG-CHO gel capsules in aqueous solution (D₂O) at pH 7.0 and 4.0. δ 10.0 ppm: aldehyde proton, δ 8.4 ppm: imine proton, δ 8.3-7.9 ppm: aromatic protons.

Figure S3 TGA diagrams of Fe₃O₄/LiPc (a) and Fe₃O₄ (b) encapsulated hollow microgels, measured at heating rate of 10 °C/min under air atmosphere. The content of Fe₃O₄ was calculated according to the formula Fe₃O₄ % = Fe₂O₃ % × 0.97. The polymer concentration used for preparing the capsules was 0.25 wt% and the OHC-PEG-CHO feed content was 60 mol%.