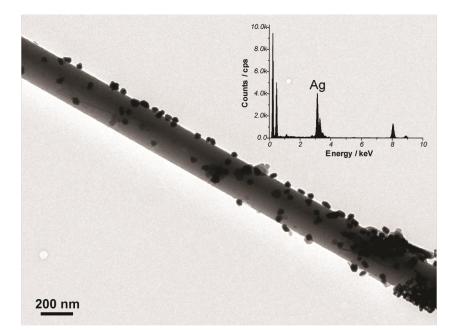
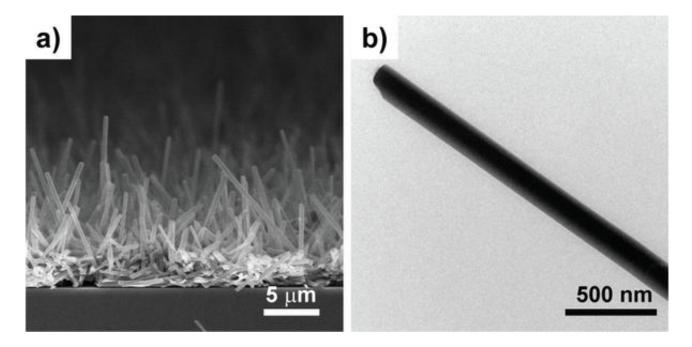
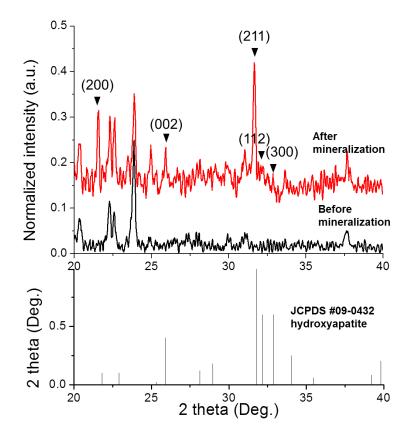

Electronic Supplementary Information (ESI)


Bone-Like Peptide/Hydroxyapatite Nanocomposites Assembled with Multi-Level Hierarchical Structures

Jungki Ryu, Sook Hee Ku, Minah Lee, and Chan Beum Park*


¹Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea


Figure S1. SEM micrographs of polydopamine nanotubes demonstrating the preferential growth of polydopamine along the side wall of peptide nanowires. Peptide nanowires were coated with polydopamine by incubating in a 2 mg mL⁻¹ dopamine solution for 16 h. Polydopamine-coated peptide nanowires were then annealed at 300 °C to selectively remove the peptide nanowires. By measuring the wall-thickness of polydopamine nanotubes, we could also indirectly estimate the thickness of polydopamine layer grown along the peptide nanowires.

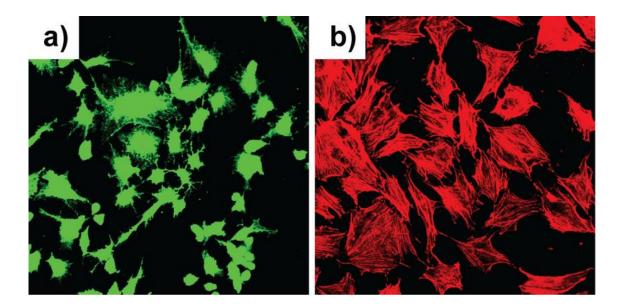

Figure S2. A TEM image and EDS spectrum of polydopamine-coated peptide nanowires after incubation in 0.1 M AgNO₃ solution for 2 h. Because of the reducing power of polydopamine (Y. Fu et al., *Adv. Funct. Mater.* **2009**, *19*, 1784-1791), Ag nanoparticles formed along the polydopamine-coated peptide nanowires even without reducing agents.

Figure S3. SEM (a) and TEM (b) micrographs of peptide nanowires after incubation in $1.5 \times$ SBF at 37 °C for a week. It was found that pristine peptide nanowires (without polydopamine coating) have no biomineralization activity.

Figure S4. XRD diffraction patterns of polydopamine-coated peptide nanowires before and after two days of biomineralization in $1.5 \times$ SBF at 37 °C. It was found that calcium phosphate minerals grown along the polydopamine-coated peptide nanowires are hydroxyapatite, rather than other calcium phosphate crystals such as octacalcium phosphate and dicalcium phosphate.

Figure S5. Fluorescent micrographs of preosteoblast (MC3T3-E) cultured on glass substrate showing polygonal morphology. (a) Live/Dead cell assay; (b) actin-filament staining with rhodamine-phalloidin.