ARTICLE TYPE

Supporting info for: A simple route to fabricate patchy nanoparticle via self-assembly of a multiblock copolymer chain in one step

Jing Zhang,^{\ddagger} Zhong-Yuan Lu,^{$*\ddagger$} and Zhao-Yan Sun^{*\$}

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX First published on the web Xth XXXXXXXX 200X DOI: 10.1039/b000000x

1 Definition of $C_{\infty \nu}$, $D_{\infty h}$, D_{3h} and T_d

Molecular symmetry in chemistry describes the symmetry present in molecules and the classification of molecules according to their symmetry. Molecular symmetry is a fundamental concept in chemistry, as it can predict or explain many of a molecule's chemical properties. The symmetry of a molecule can be described by a set of symmetry elements:¹

E - the identity operation 2π

 \mathbf{C}_n - rotation by $\frac{2\pi}{n}$ angle

 S_n - improper rotation (rotation by $\frac{2\pi}{n}$ angle and reflection in the plane perpendicular to the axis)

 σ_h - horizontal reflection plane (perpendicular to the principal axis)

 σ_v - vertical reflection plane (contains the principal axis)

 σ_d - diagonal reflection plane (contains the principal axis and bisect the angle between two C₂ axes perpendicular to the principal axis)

A point group is a set of symmetry operations forming a mathematical group, for which at least one point remains fixed under all operations of the group. We will introduce four of them $(C_{\infty\nu}, D_{\infty h}, D_{3h} \text{ and } T_d)$ used here to estimate the symmetry of the patchy particles, as shown in Table 1.

2 Definition of four parameters: R_g , S_c , A_p and S_p

Four important and experimentally relevant structural properties, i.e. the radius of gyration, the surface coverage, the symmetry parameter, and the asphericity parameter, are used to characterize the patchy particles.²

This journal is © The Royal Society of Chemistry [year]

2.1 Radius of gyration (R_g) .

The radius of gyration is used to characterize the size of a polymer chain, with the definition:

$$R_g = \sqrt{\frac{1}{N}\sum \left(\mathbf{r}_i - \mathbf{r}_{cm}\right)^2},\tag{1}$$

$$\mathbf{r}_{cm} = \frac{1}{N} \sum \mathbf{r}_i, \qquad (2)$$

where \mathbf{r}_i is the position of bead *i*, \mathbf{r}_{cm} is the center of mass of the polymer, and *N* is the total number of beads in the chain.³

2.2 Surface coverage (S_c) .

We use a lattice point counting scheme to calculate S_c . First, we divide the simulation box into several cells with side length of σ , and locate the cells that contain B beads, C_B (B domain is the major domain). The total number of cells containing B beads is n_B . Then, we define two variables $C_{A,i}$ (A domains are the patchy domains) and $C_{border,i}$. If any neighboring cell of C_B contains A beads, $C_{A,i} = 1$, otherwise $C_{A,i} = 0$, *i* from 1 to n_B ; if any neighboring cell of C_B is empty, $C_{border,i} = 1$, otherwise $C_{border,i} = 0$, *i* from 1 to n_B . In this way, we can calculate the interface area of A domains and B domain, and then divide it by the total surface area of the patchy particle to define the surface coverage, which can be expressed as

$$S_c = \frac{\sum C_{A,i}}{\sum C_{A,i} + \sum C_{border,i}}.$$
(3)

2.3 Asphericity parameter (A_p) .

The asphericity denotes the shape of the aggregate and can be estimated by measuring the deformation of the micellar morphology away from a spherical geometry.⁴ First, the radius of gyration tensor of the aggregate is constructed,⁵

$$\mathbf{A} = \begin{bmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{bmatrix}$$
(4)

[‡] Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, China. Fax: 0086 431 88498026; Tel: 0086 431 88498017; E-mail: luzhy@jlu.edu.cn § State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. Fax: 0086 431 85262969; Tel: 0086 431 85262896; E-mail: zysun@ciac.jl.cn

Table 1 The definition of molecular symmetry: $C_{\infty\nu}$, $D_{\infty h}$, D_{3h} are	$d T_d$
--	---------

Point group	Symmetry elements	Simple description	Example molecules
$C_{\infty \nu}$	E, $2C_{\infty}$, σ_{ν}	linear	HCl
$\mathrm{D}_{\infty h}$	E, $2C_{\infty}$, $\infty \sigma_i$, i , $2S_{\infty}$, ∞C_2 ,	linear with inversion center	CO_2
D_{3h}	E, 2C ₃ , 3C ₂ , σ_h , 2S ₃ , 3 σ	trigonal planar	BF_3
T_d	E, 8C ₃ , 3C ₂ , 6S ₄ , $6\sigma_v$	tetrahedral	CH_4

where

$$S_{xx} = \frac{1}{N} \sum (x_i - x_c) (x_i - x_c)$$
(5)

$$S_{xy} = \frac{1}{N} \sum (x_i - x_c) (y_i - y_c)$$
(6)

etc. Parameters λ_1 , λ_2 , λ_3 are the characteristic values of this matrix. After diagonalization process, we obtain

$$\mathbf{S} = \begin{bmatrix} \lambda_1^2 & 0 & 0\\ 0 & \lambda_2^2 & 0\\ 0 & 0 & \lambda_3^2 \end{bmatrix}$$
(7)

where $\lambda_1 < \lambda_2 < \lambda_3$. We can use these characteristic values to calculate the asphericity parameter

$$A_{p} = \frac{(\lambda_{1}^{2} - \lambda_{2}^{2})^{2} + (\lambda_{1}^{2} - \lambda_{3}^{2})^{2} + (\lambda_{3}^{2} - \lambda_{2}^{2})^{2}}{2(\lambda_{1}^{2} + \lambda_{2}^{2} + \lambda_{3}^{2})^{2}}.$$
 (8)

 A_p varies from 0 to 1; 0 represents a perfect spherical globule, 0.25 for a circle, and 1 for a rod.⁶

2.4 Symmetry parameter (S_p) .

 S_p is defined through the root mean square deviation (*RMSD*). We first find out the center of mass positions of each patch as well as the whole patchy particle. The root mean square deviation

$$RMSD = \sqrt{\frac{\sum \left(\mathbf{r}_{cm,i} - \mathbf{r}_{perfect}\right)^2}{n}}$$
(9)

can be calculated by using Visual molecular dynamics $(VMD)^7$ package, which can generate a perfect structure having the same point group as our patchy particle. The *RMSD* shows the difference between the two structures. Then we define the symmetry parameter as

$$S_p = \frac{RMSD}{R_g},\tag{10}$$

which is the ratio of symmetry difference to the particle size.

3 Snapshots of the dynamic pathway for the patchy particles with high symmetries

Fig. 1 shows the snapshots for the dynamic pathway for the formation of patchy nanoparticles with high symmetries.

2 | Journal Name, 2010, [vol],1–3

References

- 1 J. P. Lowe and K. Peterson, *Quantum Chemistry, Third Edition*, Academic Press, 2005, pp. 431–434.
- 2 Z. Zhang and S. C. Glotzer, Nano Lett., 2004, 4, 1407–1413.
- 3 M. Rubinstein and R. H. Colby, *Polymer Physics*, Oxford Univ. Press, 2003, pp. 51–54.
- 4 T. Zhou and S. B. Chen, Macromolecules, 2005, 38, 8554-8561.
- 5 C. M. Lin, Y. Z. Chen, Y. J. Sheng and H. K. Tsao, *React. Funct. Polym.*, 2009, 69, 539–545.
- 6 H. Noguchi and K. Yoshikawa, J. Chem. Phys., 1998, 109, 5070-5077.
- 7 W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graphics, 1996, 14, 33– 38.

Fig. 1 Snapshots of the dynamic pathway for (a) one-patch, (b) two-patch, (c) three-patch and (d) four-patch structures, where state 1 represents for the initial single multiblock copolymer chain, state 2 to state 4 are the intermediate states, and state 5 corresponds to the structures with high symmetries in our simulations.