Supporting Information for

Amphiphilic DNA-Dendron Hybrid: A New Building Block for Functional

Assemblies

By Liying Wang, Yu Feng, Yawei Sun, Zhibo Li, Zhongqiang Yang, Yan-Mei He, Qing-Hua Fan,* and Dongsheng Liu*

Table of Contents

1.	General Information	52
2.	Synthesis of Phosphoramidite Functionalized Dendrons	53
3.	Synthesis DNA-Dendron ConjugatesS2	12
4.	Formation of FibersS	14
5.	CMC Measurement ExperimentS2	14
6.	DNA Modified Gold Nanoparticles Preparation and Hybridization with	
G	₂ Cl-18 NanofiberS	14
G ₂ 7.	2CI-18 NanofiberS2	14 15
G; 7. 8.	² Cl-18 NanofiberSi Nile Red Encapsulation ExperimentsSi Cryo-TEM and TEM ExperimentSi	14 15 16
G _? 7. 8. 9.	2CI-18 NanofiberSi Nile Red Encapsulation ExperimentsSi Cryo-TEM and TEM ExperimentSi FiguresSi	14 15 16 17
G 7. 8. 9. 10.	² Cl-18 Nanofiber	14 15 16 17 20

1. General Information

Unless otherwise noted, all experiments were carried out under an inert atmosphere of dry nitrogen by using standard Schlenk-type techniques. ¹H NMR and ¹³C NMR spectra were recorded on Bruker AMX 300 Spectrometer ⁽¹H: 300 MHz; ¹³C: 75 MHz) at 298 K. Chemical shifts are reported in parts per million (ppm) relative to the internal standards, partially deuterated solvents or tetramethylsilane (TMS). Coupling constants (J) are denoted in Hz and chemical shifts (δ) in ppm. Multiplicities are denoted as follows: s = singlet, d = doublet, m = multiplet, br = broad. Matrix-assisted laser desorption-ionization (time of flight) mass spectrometer (MALDI-TOF) was performed on a Bruker Biflex III MALDI-TOF spectrometer with α -cyano-4- hydroxylcinnamic acid (CCA) as the matrix. High resolution mass spectrometer. Electron spray ionization mass spectrometry was performed on a Thermo Finnigan Surveyor MSQ-Plus Mass spectrometer. Elemental analyses were performed on a Flash EA 1112 Elemental Analyzer.

All chemicals were obtained from Aldrich or Alfa Aesar (Tianjing, China) and used as received unless otherwise mentioned. The organic solvents used for synthesis were dried according to published methods¹. Water used in all experiments was Milli-Q deionized (15.6 M Ω .cm).

AFM samples were preparated by deposition of 10 μ L self-assembled mixture at a concentration of 20 μ M onto freshly cleaved mica and dried automatically in air. AFM images were acquired in air in tapping mode on a Veeco MultiMode 8 Scanning Probe Microscope with SNL (Sharp Nitride Lever) probe.

2. Synthesis of Phosphoramidite Functionalized Dendrons

Chart S1. Chemical structures of phosphoramidite functionalized dendrons.

Scheme S1. Synthetic routes to phosphoramidite functionalized dendrons.

2.1 General procedure for the preparation of MOMG_n-COOMe

MOMG₀-**COOMe:** Dimethyl 5-hydroxyisophthalate (6.30 g, 30.0 mmol) solution in 70 ml anhydrous THF was added to an ice cooled suspension of NaH (3.60 g, 81.0 mmol, as 60% dispersion in oil) in anhydrous THF (30 mL) dropwise. The mixture was stirred for 2 h and methoxymethyl chloride (MOMCl, 4.35 g, 4.10 mL, 54.0 mmol) was added dropwise. After warming to room temperature, the mixture was stirred overnight. Then the reaction was quenched by dropwise addition of saturated ammonium chloride. The product was extracted with dichloromethane. The extract was dried by anhydrous Na₂SO₄ and concentrated to afford the crude product. Precipitating with petroleum ether afforded pure MOMG₀-COOMe (7.08 g, 93% yield) as an off-white solid. ¹H NMR (300 MHz, CDCl₃, δ): 3.49 (s, *CH*₃OCH₂, 3H), 3.94 (s, COOCH₃, 6H), 5.25 (s, CH₃OCH₂, 2H), 7.88 (d, *J* = 1.4 Hz, Ar*H*, 2H), 8.34 (d, *J* = 1.4 Hz, Ar*H*, 1H). ¹³C NMR (75 MHz, CDCl₃, δ): 166.4, 157.6, 132.2, 124.5, 121.9, 94.8, 56.7, 52.8. HRMS-FAB (m/z): [M+H]⁺ calcd for C₁2H₁₅O₆, 255.0863; found: 255.0863.

MOMG₁-**COOMe**: Diisopropyl azodicarboxylate (DIAD, 5.05 g, 25.0 mmol, 4.95 mL) was added dropwise to an ice-bath cooled solution of $MOMG_0$ -CH₂OH (1.98 g, 10.0 mmol), dimethyl 5-hydroxyisophthalate (4.30 g, 20.5 mmol) and triphenylphosphine (PPh₃, 5.77 g, 22.0 mmol) in dry THF (60 mL) via syringe. The reaction mixture was then stirred for 10 min at 0 °C and then 24 h at room temperature under a nitrogen atmosphere. The reaction was monitored by TLC upon the completion. The crude product was purified as follows: i) The reaction mixture was concentrated to about 20 mL, methanol was added under vigorous stirring, and the precipitate was isolated by filtration; ii) The resulting precipitate was redissolved in THF (20 mL), and precipitated into methanol (200 mL). After filtration, an

off-white solid of MOMG₁-COOMe (5.24 g, 90%) was obtained. ¹H NMR (300 MHz, CDCl₃, δ): 3.50 (s, *CH*₃OCH₂, 3H), 3.94 (s, COOC*H*₃, 12H), 5.13 (s, Ar*CH*₂O, 4H), 5.22 (s, *CH*₃OC*H*₂O, 2H), 7.12 (s, Ar*H*, 2H), 7.18 (s, Ar*H*, 1H), 7.83 (s, Ar*H*, 4H), 8.29 (s, Ar*H*, 2H). ¹³C NMR (75 MHz, CDCl₃, δ): 166.0, 158.6, 157.9, 138.2, 131.9, 123.3, 120.1, 119.7, 115.0, 94.5, 70.1, 56.1, 52.4. HRMS-FAB (*m*/*z*): [M+Na]⁺ calcd for C₃₀H₃₀O₁₂Na: 605.1629; found: 605.1627.

MOMG₂-**COOMe**: Following the procedure for MOMG₁-COOMe, the reaction temperature was 45 °C. MOMG₁-CH₂OH (1.60 g, 3.4mmol), dimethyl 5-hydroxyisophthalate (3.22 g, 15.3 mmol), PPh₃ (4.46 g, 17.0 mmol), DIAD (4.13 g, 20.4 mmol, 4.05 mL), and dry THF (60 mL) yielded MOMG₂-COOMe (3.80 g, 90%) as an off-white solid after precipitation. ¹H NMR (300 MHz, CDCl₃, δ): 3.48 (s, CH₃OCH₂, 3H), 3.93 (s, COOCH₃, 24H), 5.08 (s, ArCH₂O, 4H), 5.13 (s, ArCH₂O, 8H), 5.19 (s, CH₃OCH₂O, 2H), 7.05 (s, ArH, 4H), 7.10 (s, ArH, 2H), 7.13 (s, ArH, 2H), 7.17 (s, ArH, 1H), 7.82 (d, *J* = 1.4 Hz, ArH, 8H), 8.29 (t, *J* = 1.4 Hz, ArH, 4H). ¹³C NMR (75 MHz, CDCl₃, δ): 166.0, 159.3, 158.6, 157.8, 138.7, 138.2, 131.9, 123.3, 120.1, 119.7, 118.8, 114.9, 113.6, 94.5, 70.1, 69.9, 56.1, 52.4. (MALDI-TOF): m/z calcd for C₆₆H₆₂O₂₄: 1239.2; found: 1261.6 [M+Na]⁺, 1277.6 [M+K]⁺.

2.2 General procedure for the preparation of MOMGn-CH2OH

MOMG₀-CH₂OH: A solution of MOMG₀-COOMe (7.65 g, 30.1 mmol) in dry THF (300 mL) was added dropwise to a suspension of lithium aluminum hydride (LAH, 2.50g, 65.9 mmol) in THF at 0 $^{\circ}$ C. The reaction mixture was then stirred and refluxed for 1-2 h. The

reaction was quenched successively by dropwise addition of saturated ammonium chloride solution until H₂ evolution ceased. The granular salts were filtered and washed with THF (3 × 50 mL). The combined filtrate was concentrated under reduced pressure. Drying *in vacuo* for 3 h at 50 °C afforded MOMG₀-CH₂OH (5.90 g, 99% yield) as an off-white solid. ¹H NMR (300 MHz, d^6 -acetone, δ): 3.42 (s, CH₃OCH₂O, 3H), 4.18 (t, J = 5.8 Hz, ArCH₂OH, 2H), 4.59 (d, J = 5.8 Hz, ArCH₂OH, 4H), 5.17 (s, CH₃OCH₂, 2H), 6.92 (s, ArH, 2H), 6.97 (s, ArH, 1H). ¹³C NMR (75 MHz, d^6 -acetone, δ): 158.5, 144.9, 118.9, 113.7, 95.1, 64.6, 64.5, 56.0. HRMS-FAB (m/z): [M+H]⁺ calcd for C₁₀H₁₅O₄: 199.0965; found: 199.0967.

MOMG₁-**CH**₂**OH:** Following the procedure for MOMG₀-CH₂OH. LAH (1.50 g, 39.5 mmol) in THF (50 mL) and MOMG₁-COOMe (4.90 g, 8.4 mmol) in THF (100 mL), afforded the MOMG₁-CH₂OH (3.92 g, 99% yield) as an off-white solid. ¹H NMR (300 MHz, d^6 -acetone, δ): 3.43 (s, CH₃OCH₂O, 3H), 4.24 (t, J = 5.8 Hz, ArCH₂OH, 4H), 4.58 (d, J = 5.8 Hz, ArCH₂OH, 8H), 5.07 (s, ArCH₂O, 4H), 5.20 (s, CH₃OCH₂, 2H), 6.92 (s, ArH, 6H), 7.11 (s, ArH, 2H), 7.22 (s, ArH, 1H). ¹³C NMR (75 MHz, d^6 -acetone, δ): 159.9, 158.6, 144.9, 140.3, 120.5, 118.0, 115.4, 112.3, 95.2, 70.1, 64.7, 56.1. HRMS-FAB (m/z): [M+H]⁺ calcd for C₂₆H₃₁O₈: 471.2013; found: 471.1998.

MOMG₂-**CH**₂**OH:** Following the procedure for MOMG₀-CH₂OH. LAH (0.31 g, 8.2 mmol) in THF (50 mL) and MOMG₂-COOMe (1.00 g, 0.81 mmol) in THF (50 mL), afforded the MOMG₂-CH₂OH (0.64 g, 79% yield) as an off-white solid. ¹H NMR (300 MHz, d^6 -acetone, δ): 3.45 (s, CH₃OCH₂O, 3H), 4.29 (t, J = 5.7 Hz, ArCH₂OH, 8H), 4.61 (d, J = 5.4 Hz, ArCH₂OH, 16H), 5.09 (s, ArCH₂O, 8H), 5.14 (s, ArCH₂O, 4H), 5.24 (s, CH₃OCH₂, 2H), 6.95 (s, ArH, 12H), 7.12 (s, ArH, 4H), 7.16 (s, ArH, 2H), 7.20 (s, ArH, 2H), 7.26 (s, ArH, 1H). ¹³C

NMR (75 MHz, d^6 -acetone, δ): 159.7, 159.6, 158.3, 144.5, 144.1, 139.8, 120.4, 119.4, 117.7, 115.3, 113.7,111.9, 94.9, 70.0, 69.8, 64.3, 55.9. (MALDI-TOF): m/z calcd for $C_{58}H_{62}O_{16}$: 1015.1; found: 1037.6 [M+Na]⁺.

2.3 General procedure for the preparation of MOMGnCl

MOMG₁Cl: Diisopropyl azodicarboxylate (DIAD, 8.03 g, 39.6 mmol, 7.87 mL) was added via syringe to an ice-bath cooled solution of MOMG₀-CH₂OH (3.15 g, 15.9 mmol), 3,5-dichlorophenol (5.32 g, 32.6 mmol) and triphenylphosphine (PPh₃, 9.20 g, 35.1 mmol) in dry THF (120 mL) dropwise. The reaction mixture was then stirred for 10 min at 0 °C and then 24 h at room temperature under a nitrogen atmosphere. The reaction was monitored by TLC upon the completion. The crude product was purified as follows: i) The reaction mixture was concentrated to about 30 mL, methanol was added under vigorous stirring, and the precipitate was isolated by filtration; ii) The resulting precipitate was redissolved in THF, and precipitated into methanol. After filtration, afforded the MOMG₁Cl (5.60 g, 72% yield) as an off-white solid. ¹H NMR (300 MHz, CDCl₃, δ): 3.49 (s, CH₃OCH₂O, 3H), 5.01 (s, ArCH₂O, 4H), 5.20 (s, CH₃OCH₂O, 2H), 6.87 (d, *J* = 1.5 Hz, Ar*H*, 4H), 6.97 (d, *J* = 1.5 Hz, Ar*H*, 2H), 7.07 (m, Ar*H*, 3H). ¹³C NMR (75 MHz, CDCl₃, δ): 159.7, 158.0, 138.1, 135.6, 121.6, 119.6, 115.1, 114.1, 94.6, 70.2, 56.3. (ESI): m/z calcd for C₂₂H₁₈Cl₄O₄: 488.2; found: 488.3 [M]⁻.

MOMG₂Cl: Following the procedure for MOMG₁Cl. MOMG₁-CH₂OH (3.22 g, 6.9 mmol), 3,5-dichlorophenol (4.80 g, 29.4 mmol), PPh₃ (9.05 g, 34.5 mmol), DIAD (8.30 g, 41.1 mmol, 8.14 mL). After precipitating twice in methanol, afforded MOMG₂Cl (7.45 g, 89% yield) as an off-white solid. ¹H NMR (300 MHz, CDCl₃, δ): 3.48 (s, CH₃OCH₂O, 3H),

5.00 (s, ArCH₂O, 8H), 5.06 (s, ArCH₂O, 4H), 5.20 (s, CH₃OCH₂O, 2H), 6.85 (d, J = 1.4 Hz, ArH, 8H), 6.98 (m, ArH, 8H), 7.01 (s, ArH, 2H), 7.09 (s, ArH, 2H), 7.15 (s, ArH, 1H). ¹³C NMR (75 MHz, CDCl₃, δ): 159.7, 159.5, 158.0, 138.7, 138.2, 135.6, 121.6, 119.8, 118.7, 115.0, 114.1, 113.6, 94.6, 70.2, 70.0, 56.3. (MALDI-TOF): m/z calcd for C₅₀H₃₈Cl₈O₈: 1050.5; found: 1073.2 [M+Na]⁺.

MOMG₃**Cl**: Following the procedure for MOMG₁Cl. MOMG₂-CH₂OH (0.87 g, 0.86 mmol), 3,5-dichlorophenol (1.68 g, 10.3 mmol), PPh₃ (3.15 g, 12.0 mmol), DIAD (2.77 g, 13.7 mmol, 2.72 mL). After precipitating twice in methanol, afforded MOMG₃Cl (1.43 g, 78% yield) as an off-white solid. ¹H NMR (300 MHz, CDCl₃, δ): 3.46 (s, CH₃OCH₂O, 3H), 4.97 (s, ArCH₂O, 16H), 5.05 (s, ArCH₂O, 12H), 5.18 (s, CH₃OCH₂O, 2H), 6.83 (d, *J* = 1.5 Hz, Ar*H*, 16H), 6.95 (m, Ar*H*, 16H), 7.00 (m, Ar*H*, 8H), 7.07 (m, Ar*H*, 4H), 7.14 (m, Ar*H*, 1H). ¹³C NMR (75 MHz, CDCl₃, δ): 159.7, 159.4, 157.9, 138.8, 138.8, 138.2, 135.6, 121.6, 119.9, 118.8, 118.7, 115.0, 114.1, 113.6, 113.5, 94.6, 70.2, 70.0, 69.9, 56.2. (MALDI-TOF): m/z calcd for C₁₀₆H₇₈Cl₁₆O₁₆: 2175.0; found: 2197.4 [M+Na]⁺.

2.4 General procedure for the preparation of GnCl -the cleavage of MOM Group

G₁**Cl**: Concentrated HCl (5 mL) was added to an ice cooled solution of MOMG₁Cl (5.30 g, 10.9 mmol) in THF/*i*-PrOH (6/1, V/V) mixed solvent (110 mL). The solution was allowed to warm to room temperature. After stirred for 12 h, the solution was concentrated, and extracted with dichloromethane (50 mL × 3). The extract was dried by anhydrous Na₂SO₄ and concentrated. After purified by flash column chromatography, afforded the G₁Cl (4.55 g, 92% yield) as an off-white solid. ¹H NMR (300 MHz, CDCl₃, δ): 4.86 (s, ArOH, 1H), 5.00 (s,

ArCH₂O, 4H), 6.86 (m, ArH, 6H), 6.98 (m, ArH, 3H). ¹³C NMR (75 MHz, CDCl₃, δ): 159.6, 156.3, 138.4, 135.6, 121.6, 118.4, 114.1, 114.0, 69.9. (ESI): m/z calcd for C₂₀H₁₄Cl₄O₃: 444.1; found: 443.3 [M-H]⁻.

G₂Cl: Following the procedure for G₁Cl. MOMG₂Cl (4.80 g, 4.6 mmol), THF/*i*-PrOH (6/1, V/V) (110 mL), conc. HCl (10 mL). The reaction mixture was precipitated twice by methanol/water (1/1, V/V) mixed solvent, afforded G₂Cl (4.30 g, 94% yield). ¹H NMR (300 MHz, CDCl₃, δ): 5.00 (s, ArCH₂O, 8H), 5.04 (s, ArCH₂O, 4H), 6.85(m, ArH, 10H), 6.97 (s, ArH, 8H), 7.01 (m, ArH, 2H), 7.04 (m, ArH, 1H). ¹³C NMR (75 MHz, CDCl₃, δ): 159.6, 159.4, 156.3, 139.1, 138.2, 135.6, 121.6, 118.7, 118.4, 114.1, 114.0, 113.6, 70.2, 69.8. (MALDI-TOF): m/z calcd for C₄₈H₃₄Cl₈O₇: 1006.4; found: 1029.1 [M+Na]⁺.

G₃**Cl**: Following the procedure for G₁Cl. MOMG₃Cl (1.20 g, 0.55 mmol), THF/*i*-PrOH (6/1, V/V) (80 mL), conc. HCl (5 mL). The reaction was carried out at 45 °C for 8 h. The reaction mixture was precipitated twice by methanol/water (1/1, V/V) mixed solvent, afforded G₃Cl (1.10, 94% yield) as an off-whited solid. ¹H NMR (300 MHz, CDCl₃, δ): 4.97 (s, ArCH₂O, 8H), 5.02 (m, ArCH₂O, 12H), 6.83-7.07 (m, ArH, 45H). ¹³C NMR (75 MHz, CDCl₃, δ): 159.7, 159.4, 159.4, 156.2, 139.2, 138.9, 138.2, 135.6, 121.7, 118.8, 118.7, 114.1, 113.9, 113.7, 113.5, 70.2, 70.0, 69.7. (MALDI-TOF): m/z calcd for C₁₀₄H₇₄Cl₁₆O₁₅: 2130.9; found: 2153.3 [M+Na]⁺.

2.5 General procedure for the preparation of GnCl-P

G₁Cl-P: G₁Cl (1.34 g, 3.0 mmol) was dissolved in anhydrous THF (15 mL). N, *N*-Diisopropylethylamine (DIPEA, 1.17 g, 9.0 mmol, 1.50 mL) was added followed by

dropwise addition of 2-cyanothyl *N*, *N*-diisopropylphosphoramidochloridite (0.86 g, 3.6 mmol, 0.85 mL). After 30 h, analytical TLC showed no more starting material existed. The reaction mixture was diluted with ethyl acetate (30 mL). The solution was washed with saturated aqueous solution of NaHCO₃ (20 mL \times 3) and NaCl (20 mL), dried by anhydrous Na₂SO₄ and concentrated. After purified by flash column chromatography, G₁Cl-P (1.75 g, 90 % yield) was obtained as colorless oil. ¹H NMR (300 MHz, CDCl₃, δ): 1.15 (d, *J* = 6.6 Hz, CH (CH₃)₂, 6H), 1.23 (d, *J* = 6.6 Hz, CH (CH₃)₂, 6H), 2.67 (t, *J* = 6.3 Hz, OCH₂CH₂CN, 2H), 3.66-3.79 (m, CH (CH₃)₂, 2H), 3.85-4.00 (m, OCH₂CH₂CN, 2H), 5.02 (s, ArCH₂O, 4H), 6.85 (d, *J* = 1.5 Hz ArH, 4H), 6.97 (m, ArH, 2H), 7.07 (m, ArH, 3H). ¹³C NMR (75 MHz, CDCl₃, δ): 159.6, 155.1, 155.0, 138.1, 135.5, 121.6, 119.9, 118.6, 118.5, 117.6, 114.1, 70.0, 59.2, 58.9, 43.9, 43.8, 24.8, 24.7, 24.5, 24.4, 20.6, 20.5. ³¹P NMR (162 MHz, CDCl₃, δ): 147.0. (MALDI-TOF): m/z calcd for C₂₉H₃₂Cl₄N₂O₄P: 644.4; found: 683.1 [M+K]⁺.

G₂Cl-P: Following the procedure for G₁Cl-P. G₂Cl (1.00 g, 1.0 mmol), DIPEA (0.38 g, 3.0 mmol, 0.49 mL), 2-cyanothyl *N*, *N*-diisopropylphosphoramidochloridite (0.35 g, 1.5 mmol, 0.35 mL). After concentrated, G₂Cl-P (1.10 g, 92% yield) was obtained by precipitated in methanol as an off-white solid. ¹H NMR (300 MHz, CDCl₃, δ): 1.15 (d, J = 6.6 Hz, CH (CH₃)₂, 6H), 1.23 (d, J = 6.6 Hz, CH(CH₃)₂, 6H), 2.64 (t, J = 6.3 Hz, OCH₂CH₂CN, 2H), 3.66-3.78 (m, CH (CH₃)₂, 2H), 3.83-3.93 (m, OCH₂CH₂CN, 2H), 5.00 (s, ArCH₂O, 8H), 5.06 (s, ArCH₂O, 4H), 6.85-7.16 (m, ArH, 21H). ¹³C NMR (75 MHz, CDCl₃, δ): 159.6, 159.4, 155.0, 154.9, 138.7, 138.1, 135.6, 121.6, 120.1, 118.7, 118.5, 118.4, 117.6, 114.0, 113.6, 70.1, 69.8, 59.1, 58.9, 43.9, 43.8, 24.8, 24.7, 24.5, 24.4, 20.5, 20.4. ³¹P NMR (162

MHz, CDCl₃, δ): 146.5. (MALDI-TOF): m/z calcd for C₅₇H₅₁Cl₈N₂O₈P: 1206.6; found: 1245.3 [M+K]⁺.

G₃Cl-P: Following the procedure for G₁Cl-P. G₃Cl (0.44 g, 0.21 mmol), DIPEA (0.08 g, 0.63 mmol, 0.10 mL), 2-cyanothyl *N*, *N*-diisopropylphosphoramidochloridite (0.059 g, 0.25 mmol, 0.06 mL). After concentrated, G₃Cl-P (0.44 g, 92% yield) was obtained by precipitated in methanol as an off-white solid. ¹H NMR (300 MHz, CDCl₃, δ): 1.15 (d, J = 6.6 Hz, CH (CH₃)₂, 6H), 1.21 (d, J = 6.9 Hz, CH (CH₃)₂, 6H), 2.60 (t, J = 6.3 Hz, OCH₂CH₂CN, 2H), 3.66-3.74 (m, CH(CH₃)₂, 2H), 3.84-3.90 (m, OCH₂CH₂CN, 2H), 4.97 (s, ArCH₂O, 16H), 5.04 (s, ArCH₂O, 12H), 6.83-7.15 (m, ArH, 45H). ¹³C NMR (75 MHz, CDCl₃, δ): 159.7, 159.4 159.4, 155.0, 154.9, 138.9, 138.8, 138.2, 135.6, 121.6, 120.2, 118.9, 118.7, 118.5, 118.4, 117.6, 114.1, 113.6, 113.5, 70.2, 70.0, 69.7, 59.2, 58.9, 44.0, 43.8, 24.8, 24.7, 24.6, 24.5, 20.5, 20.4. ³¹P NMR (162 MHz, CDCl₃, δ): 144.9. (MALDI-TOF): m/z calcd for C₁₁₃H₉₁Cl₁₆N₂O₁₆P: 2331.2; found: 2370.2 [M+K]⁺.

3. Synthesis DNA-Dendron Conjugates

General Procedure for the preparation DNA-Dendron conjugates: The CPG loaded DNA was synthesized using ABI 394 DNA synthesizer in 1 μ mol scale with a standard phosphoramidite DNA synthesis protocol.² The DNA-loaded CPG (1 μ mol) was transferred into a vial, then 5-ethylthiotetrazole (100 μ mol) and G_nCl-P (50 μ mol) were added consequently. After dried *in vacuo*, 0.5 mL anhydrous THF was added under dry nitrogen protection. The reaction mixture was allowed to stay overnight under room temperature. Then CPG was washed twice with anhydrous THF followed by oxidation with iodine and water in

THF. After cleaved by concentrated ammonia solution in 55 °C for 3 h, the crude product was purified by 10% denaturing polyacrylamide gel electrophoresis (PAGE) with 1×TBE buffer as the running buffer. Identification of the conjugates was achieved by UV shadowing. The respective bands were excised from the gel and incubated in deionized water for 12 h. After centrifugation, the supernatant was desalted with C18 column and dried by lyophilization. The product was analyzed by MALDI-TOF. The purity of G₁-18, G₂Cl-18 and G₂Cl-9 was assessed by 20% PAGE, followed by staining with Stains All, and the purity of G₃Cl-18 was analyzed by 2% agarose gel. The samples were stored at -20 °C before use.

Chart S2. Chemical structures of other DNA-dendron hybrids G1Cl-18, G3Cl-18 and G2Cl-9.

Table S1. MALDI-TOF Results and Isolated Yield of DNA-Dendron Hybrids.

sample	calculated	found	Error (calfou.)	Yield
G ₁ Cl-18	6140	6144	-4	5.9%
G ₂ Cl-18	6702	6705	-3	15.6%
G ₃ Cl-18	7826	7832	-6	1.2%
G ₂ Cl-9	3862	3862	0	3.8%

4. Formation of Fibers

The G_n Cl-DNA was dissolved in water to make a concentrated stock solution. Dilute the stock solution with deionized water to desired concentration and add 5 μ L of dichloromethane. After vibration by a vortex mixer and centrifugation at 6000 r/min for 2 min, heated the solution to 90 °C and kept for 30 min, and then allowed it to cool to room temperature naturally. Keep the assembled solution under 4 °C for storage before used.

5. CMC Measurement Experiment

By using a stock solution of G_2 Cl-18 varying concentrations ranging from 0.05 to 20 μ M were prepared. Acetone solution of Nile Red (0.02 mM) 40 μ L was added to every tube and sonicated for 10 min. Then the solvent was evaporated under vacuum overnight and the redissolved with 200 μ L water. Fluorescence spectra were recorded at room temperature using an excitation wavelength of 550nm.

6. DNA Modified Gold Nanoparticles Preparation and Hybridization with G₂Cl-18 Nanofiber

5 nm gold nanoparticle and thioctic acid modified DNA were prepared and purified according to the published method.^[6] 28.6 μ L of DNA (87.4 μ M) was added to 50 μ L solution of Au nanoparticles (3.4 μ M). The solution was shaked overnight at room temperature on an orbital shaker at low speed. Then add 12 μ L of 1M NaCl and 3 μ L 0.4 M phosphate buffer and shake at low speed for another 12 hours at room temperature. Use ultracentrifuge to centrifuge the suspension to form a redcolored solution of nanoparticles.

The concentration of the Au/DNA conjugatets was calculated by measuring the UV absorption of the gold particle at 520 nm wavelength.

 G_2CI-18 was first assembled in 50 mM Tris-HCl buffer at a concentration of 20 μ M. Then 5 μ L of the assembled solution was mixed with 17 μ L of the DNA modified gold nanoparticle (5.8 μ M) and kept overnight. The solution was used for TEM sample preparation without further treatment.

7. Nile Red Encapsulation Experiments

To the assembled solution of G₂Cl-18 (20 μ M) 50 μ L in 0.5 mL vial, the acetone solution of Nile Red (0.038 mM) 10 μ L was added. The acetone was evaporated by opening the microcentrifuge tube cap overnight and the final volume of the solution became about 30-40 μ L. The resultant solution was diluted to about 500 μ L directly for the fluorescence spectroscopy experiment. The fluorescence spectra were acquired on a HITACHI Fluorescence Spectrophotometer F-4500 and the excitation wavelength is 550 nm.

Fluorescence microscopy experiment: The coverslips were cleaned by sonication in detergent, ultrapure water, acetone, ethanol, NaOH/ethanol, ultrapure water for 30 min each, and boiled in 1/3 H₂O₂/H₂SO₄ for 2 h. The clean coverslips were stored in ultrapure water until use. Immediately prior to use, two coverslips were dried by nitrogen flow. 7 µL of a solution were deposited onto one slide and covered by a second one. The DNA solution was drawn under the capillary forces created by the two slides and sealed with vacuum grease.

Samples were imaged on an Olympus Reflected Fluorescence System (the microscope was Olympus B \times 51). Blue light (420-480 nm) was filtered from a mercury arc lamp (Olympus

U-RFL-T) for excitation. The emitted fluorescence passed through a dichroic mirror (DM 500). Images were recorded to a computer via a cooled CCD camera (Q-IMAGING RETIGA 2000R) using the corresponding software (Image-Pro Express Version 6.0).

8. Cryo-TEM and TEM Experiment

Cryo-TEM samples were prepared in a controlled environment vitrification system (CEVS) at 28 $^{\circ}$ C.³ A micropipet was used to load 5 µL of the assembled solution of G_nCl-DNA onto a lacey support TEM grid that was held with tweezers. The excess solution was blotted with a piece of filter paper, resulting in the formation of thin films suspending the mesh holes. After waiting for about 10 s to release any stress induced during blotting, the samples were quickly plunged into a reservoir of liquid ethane (cooled by liquid nitrogen) at its melting temperature. The vitrified samples were then stored in liquid nitrogen until they were transferred to a cryogenic sample holder (Gatan 626) and examined with a JEM 2200FS TEM (200 keV) at about -174 $^{\circ}$ C. The images were recorded on a Gatan multiscan CCD and processed into a digital micrograph.

TEM samples were prepared by drop casting 7 μ L of solution on carbon coated copper grids. After 5 min, the excess solution was blotted with a piece of filter paper. Then a drop of 1 wt % uranyl acetate aqueous solution was deposited onto the surface of the sample-loaded grid. After 5 min, the excess uranyl acetate aqueous solution was blotted with a piece of filter paper. The sample-loaded grid was dried overnight. TEM images were recorded on a JEOL JEM-1011 microscope operated at 100 KeV.

9. Figures

Figure S1. The gel electrophoresis results of the G_nCl-DNA hybrids.

Figure S2. The TEM images of the G₂Cl-18 nanofibers without annealing. The scale bar is 200 nm.

Figure S3. CMC determination curve of G₂Cl-18.

Figure S4. The TEM images of the G₂Cl-18 nanofibers at different concentrations: (A) 1 μ M, (B) 10 μ M, (C) 20 μ M and (D) 50 μ M. The scale bar is 500 nm.

Figure S5. Cryo-TEM and TEM image of (A and D) G₁Cl-18, (B and E) G₃C-18 and (C and F) G₂Cl-9. The scale bar is 200 nm.

Figure S6. The chemical structure of FAM-15 and fluorescent images of the G_2 Cl-18 nanofibers hybridized with FAM-15. The scale bar is 20 μ m.

Figure S7. The TEM images of the G_2Cl-18 nanofibers after Nile Red encapsulated. The scale bar is 10 μ m.

10. ¹H NMR, ¹³C NMR, ³¹P NMR and MALDI-TOF Spectra

10.1 MALDI-TOF Spectra of G_nCl-DNA

Figure S9. MALDI-TOF spectra of G₂Cl-18.

Figure S10. MALDI-TOF spectra of G₃Cl-18.

Figure S11. MALDI-TOF spectra of G₂Cl-9.

7.2 ¹H NMR, ¹³C NMR, ³¹P NMR and MALDI-TOF Spectra of Organic Compounds

Figure S12. ¹H NMR and ¹³C NMR spectra of **MOMG₀-COOMe**

Figure S13. ¹H NMR and ¹³C NMR spectra of MOMG₀-CH₂OH

Figure S14. ¹H NMR, ¹³C NMR and ESI spectra of MOMG₁Cl.

Figure S15. ¹H NMR, ¹³C NMR and ESI spectra of G₁Cl.

Figure S16. ¹H NMR, ¹³C NMR, ³¹P NMR and MALDI-TOF spectra of G₁Cl-P.

Figure S17. ¹H NMR and ¹³C NMR spectra of **MOMG₁-COOMe**

Figure S18. ¹H NMR and ¹³C NMR spectra of MOM-G₁CH₂OH

Figure S19. ¹H NMR, ¹³C NMR and MALDI-TOF spectra of MOMG₂Cl

Figure S20. ¹H NMR, ¹³C NMR and MALDI-TOF spectra of G₂Cl.

Figure S21. ¹H NMR, ¹³C NMR, ³²P NMR and MALDI-TOF spectra of G₂Cl-P.

Figure S22. ¹H NMR and ¹³C NMR spectra of MOMG₂-COOMe.

Figure S23. ¹H NMR and ¹³C NMR spectra of MOMG₂-CH₂OH.

200 180 160 140 120 100 80 60 40 20 ppm

S38

Figure S24. ¹H NMR, ¹³C NMR and MALDI-TOF spectra of **MOMG₃Cl.**

Figure S25. ¹H NMR, ¹³C NMR and MALDI-TOF spectra of **G₃Cl.**

Figure S26. ¹H NMR, ¹³C NMR, ³¹P NMR and MALDI-TOF spectra of **G₃Cl-P**.

11.References

- Armarego W. L. F.; Chai C. L. L. Purification of Laboratory Chemicals (fifth edition); Elsevier Science: USA, 2003.
- (2) Caruthers M. H. Acc. Chem. Res. 1991, 24, 278-284.
- (3) Bellare, J. R.; Davis, H. T.; Scriven, L. E.; Talmon, Y. J. *Electron. Microsc. Tech.* 1988, 10, 87-111.
- (4) Feng, Y.; Liu, Z.-T.; Liu, J.; He, Y.-M.; Zheng, Q.-Y.; Fan, Q.-H. J. Am. Chem. Soc. 2009, 131, 7950-7951.
- (5) Lim, Y.; Lee, E.; Lee, M. Angew. Chem. Int. Ed. 2007, 46, 9011-9014.
- (6) Zhang, T.; Chen, P.; Sun, Y.; Xing, Y.; Yang, Y.; Dong, Y.; Xu, L.; Yang, Z.; Liu, D.; *Chem. Commun.* 2011, DOI 10.1039/C1CC11337B.