Electronic Supplementary Information (ESI) for

Solvent Effects on Structure, Photoresponse and Speed of Gelation of a Dicholesterol-linked Azobenzene Organogel

Yeping Wu,^a Si Wu,^b Gang Zou^a and Qijin Zhang^{*a}

^a CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Anhui Key Laboratory of Optoelectronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026 P.R. China. Fax: +86 551 3601704; E-mail: zqjm@ustc.edu.cn

^b Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

Fig. S1 Pictures of gels (1% w/v) at different methanol content: (a) 0%; (b) 5%; (c) 10%; (d) 15%; (e) 20%; (f) 30%.

Fig. S2 SEM images of xerogels (1% w/v) prepared at different methanol content: (a) 0%; (b) 5%; (c) 10%; (d) 15%; (e) 20%; (f) 30%.

Fig. S3 UV-vis spectral changes of the gels (1% w/v, 0.13 mm path length) irradiated with 365 nm light at different methanol content: (a) 0%; (b) 5%; (c) 10%; (d) 15%; (e) 20%; (f) 30%.

Fig. S4 Normalized UV-vis spectra of the gels (1% w/v, 0.13 mm path length) at different methanol content.

Fig. S5 (a) UV-vis spectral changes of the gel with 30% methanol (1% w/v, 0.13 mm path length) irradiated with 435 nm light after irradiation with 365 nm light for 840 s. (b) Intensities of UV-vis absorbance at 700 nm as a function of time during the visible light (435 nm) irradiation of the gel with 30% methanol (1% w/v, 0.13 mm path length).

As shown in Fig. S5a, compared to the spectrum of irradiated for 60 s, a shoulder

peak shown at the left part of the π - π * absorption band of the spectrum for 90 s, and this shoulder peak became obvious afterwards. For Fig. S5b, absorbance at 700 nm is ascribed to scattering caused by the fiber network of the gel, which became obvious gradually since irradiated for 90 s. These results both indicate that the gel began to reform when the sol was irradiated with visible light for 90 s (before the entire *cis-trans* isomerization (visible light irradiation) was accomplished, corresponding to the "0 min" in Table 2).

Fig. S6 Normalized UV-vis spectra of the solutions ((a) 30% cyclohexane and (b) 30% chloroform) and the gels ((c) 30% *n*-butanol, (d) 30% DMF and (e) 30% DMSO). The concentration of **DCAZO2** is 1% w/v in all the samples.

Calculations of the solubility parameters of the solvents

$\delta_d/MPa^{1/2}$	$\delta_p/MPa^{1/2}$	$\delta_h/MPa^{1/2}$				
17.9	11.9	5.2				
15.1	12.3	22.3				
16.8	0.0	0.2				
16.0	5.7	15.8				
17.8	3.1	5.7				
17.4	13.7	11.3				
18.4	16.4	10.2				
	$\frac{\delta_d/MPa^{1/2}}{17.9}$ 15.1 16.8 16.0 17.8 17.4 18.4	$\begin{tabular}{ c c c c c c c }\hline\hline & $\delta_{\rm p} / MPa^{1/2}$ & $\delta_{\rm p} / MPa^{1/2}$ \\ \hline & 17.9 & 11.9 \\ \hline & 15.1 & 12.3 \\ \hline & 16.8 & 0.0 \\ \hline & 16.8 & 0.0 \\ \hline & 16.9 & 0.0 \\ \hline & 16.9 & 0.1 \\ \hline & 17.8 & 3.1 \\ \hline & 17.4 & 13.7 \\ \hline & 18.4 & 16.4 \\ \hline end{tabular}$				

Table S1. Hansen parameters of cyclopentanone, methanol, cyclohexane, *n*-butanol, chloroform, DMF and DMSO

These data are taken from C. M. Hansen, *Hansen solubility parameters: a user's handbook*, CRC Press, Boca Raton, 2007.

Table S2. The Hansen parameters of the mixed solvents calculated according to $\delta_{average}$

Mixed solvents	$\delta_d/MPa^{1/2}$	$\delta_p/MPa^{1/2}$	$\delta_h/MPa^{1/2}$
0% methanol	17.9	11.9	5.2
5% methanol	17.8	11.9	6.1
10% methanol	17.6	11.9	6.9
15% methanol	17.5	12.0	7.8
20% methanol	17.3	12.0	8.6
30% methanol	17.1	12.0	10.3
30% cyclohexane	17.6	8.3	3.7
30% <i>n</i> -butanol	17.3	10.0	8.4
30% chloroform	17.9	9.3	5.4
30% DMF	17.8	12.4	7.0
30% DMSO	18.1	13.3	6.7
50% methanol	16.5	12.1	13.8

$= \Sigma \phi_i \delta_i$ (Equ. 68 of *Chemical Reviews*, 1975, 75, 731-753.)

Table S3.	The Teas	parameters	of the	solvents
-----------	----------	------------	--------	----------

Mixed solvents	\mathbf{f}_{d}	f _p	$\mathbf{f}_{\mathbf{h}}$
0% methanol	0.511	0.340	0.149
5% methanol	0.497	0.332	0.170
10% methanol	0.484	0.327	0.190
15% methanol	0.469	0.322	0.209
20% methanol	0.456	0.317	0.227
30% methanol	0.434	0.305	0.261
methanol	0.304	0.247	0.449

30% cyclohexane	0.595	0.280	0.125
30% <i>n</i> -butanol	0.485	0.280	0.235
30% chloroform	0.549	0.285	0.166
30% DMF	0.478	0.333	0.188
30% DMSO	0.475	0.349	0.176
50% methanol	0.389	0.285	0.326

These parameters are calculated according to the following equations.

$$\begin{split} f_{\rm d} &= \delta_{\rm d} \, / \left(\delta_{\rm d} + \delta_{\rm p} + \delta_{\rm h} \right) \\ f_{\rm p} &= \delta_{\rm p} \, / \left(\delta_{\rm d} + \delta_{\rm p} + \delta_{\rm h} \right) \\ f_{\rm h} &= \delta_{\rm h} \, / \left(\delta_{\rm d} + \delta_{\rm p} + \delta_{\rm h} \right) \end{split}$$

Calculations of the solubility parameters of the gelator DCAZO2

The Hansen parameters of DCAZO2 are calculated according to a group-contribution method reported in "Int. J. Thermophys. 2008, 29, 568-585".

Fig. S8 Molecular structure of DCAZO2.

Table S4. First-order group approximation for the prediction of the dispersion partial solubility parameter, $\boldsymbol{\delta}_{d}$, the polar partial solubility parameter, $\boldsymbol{\delta}_{p},$ and the hydrogen

bonding partial solubility parameter, δ_{h} , for the repeat unit of **DCAZO2**

First order	Occurrences,	Contributions,	N_iC_i	Contributions,	N_iC_i	Contributions,	N_iC_i
group	N_i	$C_{i}\left(\delta_{d}\right)$	(δ_d)	$C_{i}\left(\delta_{p}\right)$	(δ _p)	$C_{i}\left(\delta_{h}\right)$	(δ_h)
N(except	2	1.5438	3.0876	2.5780	5.1560	***	***
as above)							
AC	4	0.8446	3.3784	0.6187	2.4748	-0.17405	-0.6962
ACH	8	0.1105	0.884	-0.5303	-4.2424	0.13532	1.08256
CH ₂ O	4	0.0310	0.124	0.8826	3.5304	***	***
COO	2	0.2039	0.4078	3.4637	6.9274	0.37204	0.74408
-CH=C<	2	0.5372	1.0744	-0.9024	-1.8048	-0.03066	-0.06132
-CH<	14	0.6450	9.03	0.6491	9.0874	0.1386	1.9404
>C<	4	1.2686	5.0744	2.0838	8.3352	***	***

-CH ₂ -	22	-0.0269	-0.5918	-0.3045	-6.699	-0.11610	-2.5542
-CH ₃	10	-0.9714	-9.714	-1.6448	-16.448	0.29901	2.9901
Constant,			17.3231		7.3548		1.3720
С							
$\Sigma N_i C_i + C$			30.0779		13.6718		4.81742

Table S5. Second-order group approximation for the prediction of the dispersion partial solubility parameter, δ_d , the polar partial solubility parameter, δ_p , and the

hydrogen bonding partial solubility parameter, δ_{h} , for the repeat unit of **DCAZO2**

Second	Occurrences,	Contributions,	$M_j D_j$	Contributions,	$M_j D_j$	Contributions,	$M_j D_j$
order group	\mathbf{M}_{j}	$D_{j}\left(\delta_{d}\right)$	(δ_d)	$D_{j}(\delta_{p})$	(δ_p)	$D_{j}\left(\delta_{h}\right)$	(δ_h)
(CH ₃) ₂ -CH-	2	0.0460	0.092	0.0019	0.0038	10 ⁻⁸	$2*10^{-8}$
AC-O-C	2	0.2568	0.5136	0.8153	1.6306	***	***
String in	2	-0.1945	-0.389	***	***	-0.280859	-0.561718
cyclic							
$\Sigma M_j D_j$			0.2166		1.6344		-0.561718

 $\begin{array}{l} \delta_d{=}30.0779{+}0.2166{=}30.2945\\ \delta_p{=}13.6718{+}1.6344{=}15.3062\\ \delta_h{=}4.81742{-}0.561718{=}4.255702 \end{array}$

The Teas parameter of **DCAZO2** can be calculated as follows:

 $f_d\!\!=\!\!\delta_d /\!(\delta_d\!\!+\!\!\delta_p\!\!+\!\!\delta_h)\!\!=\!\!30.2945/49.856402 \!\!=\!\!0.608$

 $f_p\!\!=\!\!\delta_p \,/\!(\delta_d\!\!+\!\!\delta_p\!\!+\!\!\delta_h)\!\!=\!\!15.3062/49.856402 \!\!=\!\!0.307$

 $f_h\!\!=\!\!\delta_h /\!(\delta_d\!+\!\delta_p\!+\!\delta_h)\!\!=\!\!4.255702/49.856402 \!=\! 0.085$