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A Granocentric model v2 master

equations

Using the description of the model in Sec. 1.1, we derive
the relationship between the three model control param-
eters and the probability distributions of neighbors and
contacts. Recall that each time a neighbor is selected for
a given central particle, it takes up a portion of the avail-
able solid angle, Ω∗, and that neighbors are selected until
the sum of all filled solid angle is greater than Ω∗. The
probability density function (pdf) for the amount of solid
angle each neighbor fills, ρ(ω), depends on both the cen-
ter particle and neighbor particle radius, as well as their
surface-to-surface distance. Thus the distribution ρ(ω) in-
herently depends on the distribution of particle radii, as
well as the model control parameters p and δ∗. Therefore,
the probability distribution for the number of neighbors
depends on all three model control parameters. In or-
der to determine this distribution, we may write a master
equation for Fn(Ω), the probability that after n neighbor-
ing particles have been selected, their total solid angle is
less than Ω. By considering all possible solid angles for
the next added particle, we obtain the master equation

Fn+1(Ω) =

∫ Ω

0

Fn(Ω− ω)ρ(ω)dω (1)

where F0(Ω) = 1. To relate this function to the prob-
ability that the central particle has exactly n neighbors,
first recall that the last added neighbor is included into
the neighbor shell only half the time. Also realize that
neighbors are added until the last added neighbor causes
the filled solid angle to increase above the threshold Ω∗;
before adding the last neighbor the filled solid angle is less
than Ω∗. Then, if the last neighbor is to be rejected from
the shell of neighbors, there must be n neighbors that do
not overfill Ω∗, but n+1 that do. This happens with prob-
ability Fn(Ω

∗)− Fn+1(Ω
∗). Similarly, if the last neighbor

is to be accepted, there must be n − 1 neighbors that do
not overfill Ω∗, but n that do. This occurs with probabil-
ity Fn−1(Ω

∗) − Fn(Ω
∗). Combining these we obtain the

probability that there are exactly n neighbors as

P (N = n) =
1

2

[

Fn−1(Ω
∗)− Fn+1(Ω

∗)
]

. (2)

We follow a similar procedure to determine the joint
probability for the number of neighbors and the number
of contacts by creating a master equation for the function
Gn(Ω, z), the probability that after adding n particles, z
of which are contacting, the total filled solid angle is below
Ω. The pdf for the amount of solid angle each neighbor
fills, ρ(ω), can be divided between contacting and non-
contacting neighbors as ρ(ω) = pρz(ω)+(1−p)ρn(ω) where
ρz(ω) is the conditional pdf for the solid angle of contact-
ing neighbors and ρn(ω) is the conditional pdf for the solid
angle of non-contacting neighbors. We obtain the master
equation

Gn+1(Ω, z) = p

∫ Ω

0

Gn(Ω− ω, z − 1)ρz(ω)dω

+ (1− p)

∫ Ω

0

Gn(Ω− ω, z)ρn(ω)dω,

(3)

for Gn(Ω, z) by considering whether the next added neigh-
bor is a contact (and increase z by one) or is not. We may
write the joint distribution for n neighbors and z contacts
by considering three cases: (1) the last added particle is
not kept as a neighbor, (2) the last added neighbor is a
non-contact and is kept, and (3) the last added neighbor is
a contact and is kept. These possibilities are independent,
and their respective probabilities can be added to obtain

P (N = n, Z = z) =
1

2

(

G(1) + (1− p)G(2) + pG(3)
)

(4)

where

G(1) = Gn(Ω
∗, z)−

∫ Ω∗

0

Gn(Ω
∗ − ω, z)ρ(ω)dω

G(2) = Gn−1(Ω
∗, z)−

∫ Ω∗

0

Gn−1(Ω
∗ − ω, z)ρn(ω)dω

G(3) = Gn−1(Ω
∗, z − 1)−

∫ Ω∗

0

Gn−1(Ω
∗ − ω, z − 1)ρc(ω)dω

are the probabilities of the three cases enumerated above.

B Algorithm: Selecting neighbors

This algorithm for model v2 takes advantage matrix ma-
nipulation to compute all simulations simultaneously and
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eradicate as many loops as possible, thus enhancing the
efficiency of the implementation of the model. Note that
by moving steps 3 and 4 to after step 5, the algorithm can
be used for generating cells of model v1.

1. Select the center particle’s radius, Rc, from the pre-
scribed distribution, PR(r), for all Ns Monte Carlo
simulations.

2. Create an Ns × m matrix, R, of potential neighbor-
ing particle radii, Rj , selected from PR(r), where m is
greater than the maximum number of expected neigh-
boring particles (we chose m = 35).

3. Create an Ns × m logical matrix, C, for contacting
particles. Each element is set to one with probability
p, then the first zmin columns are set to one; these
contacting particles ensure mechanical stability.

4. Create an Ns × m matrix, D, of surface-to-surface
distances, δj , from the center particle: each element
is chosen from the prescribed distribution and then
scaled so that they have mean δ∗. Then, for each
(i, j) where Cij = 1 the element Dij = 0 since this
particle is contacting.

5. Calculate the Ns ×m matrix O, of solid angle shad-
owed on a unit sphere by each potential neighbor by
first repeating the center particle radius, Rc, for each
simulation across m columns, forming the Ns × m

matrix Rc. Then the solid angle matrix is

O = 2π

(

1−

√

(R+Rc +D)2 −R2

R+Rc +D

)

(5)

where operations are carried out element-by-element
within the matrices.

6. Compute the cumulative sum of matrix O across each
row. The potential neighbors which are included as
actual neighbors are those where this cumulative sum
is less than Ω∗. Half the time, the next potential
neighbor is also chosen. The actual neighbors are
stored as a logical matrix, N .

The number of neighbors in each simulation is the sum
across the rows of matrix N , while the number of contacts
in each simulation is the sum across the rows of the matrix
who’s elements are NijCij .
When using this algorithm to generate the numbers

of neighbors and contacts for the purpose of optimizing
model parameters, we keep the bank of generated random
sizes, R, Rc, and and distances D. When changing δ∗, the
distances are simply rescaled, and the solids angle matrix,

O, recalculated. Changing Ω∗ simply changes the neigh-
bors that are selected. In our Monte Carlo simulations,
we controled the statistical error by generating up to 105

cell samples and checked convergence of the results.

C Algorithm: Computing volume

We present this algorithm for generating the cell volumes
in model v2 from the view point of a single simulation,
but note that it can be efficiently implemented with the
matrices generated by Algorithm 1.

1. Determine the filled solid angle of the cell,

Ωtot =
m
∑

j=1

NijOij .

The remaining approximate physical solid angle not
filled by neighboring particles is 4π − Ωtot.

2. Distribute this remaining solid angle to each contact-
ing neighbor (∀k : NikCik = 1) proportionally to its
solid angle Oik:

∆ωk = Oik

4π − Ωtot
m
∑

j=1

NijCijOij

. (6)

For the non-contacting neighbors no solid angle is
added and ∆ωk = 0.

3. For each potential neighbor (k = 1 to m) with radius
R = Rik:

• Calculate the angle of the cone defined by the
newly determined solid angle shadowed:

θ̂ = cos−1

(

1−
Oik +∆ωk

2π

)

(7)

• Determine the location of the hyperbolic sheet
cap defined by the navigation map30 (i.e. the
points equidistance from the surfaces of both
neighbor and center spheres) in polar coordi-
nates, (r, θ). Taking θ = 0 to be the line con-
necting the centers of the center particle and the
kth neighbor particle, we obtain the hyperbolic
sheet’s location,

r(θ) =
1

2

R2 + (Rc −R)2

R cos θ − (Rc −R)
, (8)

by equating the boundary-to-surface distance for
both the center particle and neighbor particle;
its location is rotationally symmetric about θ =
0.
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• Integrate in spherical coordinates the volume
from r = 0 to the cap defined by Eq. (8), over θ

from the centerline of the cone (θ = 0) to θ = θ̂k
defined in Eq. (7), and over φ from 0 to 2π to
obtain

Vk = V (θ̂;Rc, R, δ) =
π(δ + 2Rc)

3(δ + 2R)

24(δ +R+Rc)

×

{

(δ + 2R)2
[

R−Rc + (δ +R+Rc) cos θ̂
]2 − 1

}

(9)
where δ = Dik is the surface-to-surface distance.

4. Compute the total local cell volume by summing the
volume contributions from each contributing neigh-
bor:

V =

m
∑

k=1

NikVk (10)

where Vk is computed using Eq. (9).
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