617 SUPPLEMENTARY MATERIALS

are calculated in case of NN. (b) and (d) are calculated in case of PN. The blue boxes in (a) and (c) represent B_n and B_s .

619

621

Soft Matter

Supplementary Figure 2: Directionality quantification for NGs with PN. (a-c) 10 μ m x 10 μ m area of noisy NGs and relative FTs for p = 10%, 40% and 80%. (d,e) δ as a function of A and p. As expected, no difference is found with respect to NGs with NN (see Fig. 3 and Fig. 4).

622

Soft Matter

Supplementary Figure 3: Calculation of Signal (left column) and Noise (right column) as defined

in Eq. 1 for different values of on A and p.

624

Supplementary Figure 4: SEM images of the noisy NGs. In case of high values of *p*, NN replicas are characterized by scattered nano-posts on an overall flat surface, while PN leads to surfaces with scattered nanoposts. Scale bars = $2 \mu m$.

627

MATLAB scripts
%% noise generator
close all,clear all,clc
dimX=10;
dimY=10;
% period
T=1;
% duty cycle
DC=0.5;
%number of elements
nX=dimX/T;
nY=2*dimY;
% threshold
soglia=0.80;
terr=zeros(nY,nX);
nome=['noise',num2str((1-soglia)*100)];
app=zeros(nX,nY);
app=uint(app);
terr=app.MantBits;
clear app,
terr(:,(1:2:nX))=1;
imagesc((0:dimX/nX:dim),(0:dimY/nY:dim),terr),colormap copper,
xlabel('\mum'),ylabel('\mum'),

660	%% NEG noise generation
661	dist=rand(nX,nX/2);
662	T=0.90; %non ideality threshold
663	dist(dist>=soglia)=1;
664	dist(dist <soglia)=0;< th=""></soglia)=0;<>
665	figure,imagesc(dist),colormap copper,
666	
667	terr(:,(1:2:nX))=not(dist);
668	imagesc((0:dimX/nX:dim),(0:dimY/nY:dim),terr),colormap copper,
669	xlabel('\mum'),ylabel('\mum'),
670	vertici=5;
671	x=[0 dimX dimX 0 0];
672	y=[0 0 dimY dimY 0];
673	DXF_poly(fid,x,y,vertici,5,1),
674	
675	
676	dx=dimX/nX*DC;
677	dy=0.5;
678	
679	for I=1:nX
680	non_id=find((dist(:,I)));
681	
682	x=[(I-1) (I-1)+DC (I-1)+DC (I-1) (I-1)]*T;
683	
684	aperto=false;
685	for J=1:length(non_id)-1
686	if not(aperto)
687	yi=non_id(J);
688	end
689	if non_id(J)+1==non_id(J+1)
690	aperto=true;

691	else
692	yf=non_id(J);
693	y=[yi yi yf+1 yf+1 yi]*dy;
694	DXF_poly(fid,x,y,vertici,7,1),
695	aperto=false;
696	end
697	
698	end
699	
700	x=[(I-1)*T+(T-dx) I*T I*T (I-1)*T+(T-dx) (I-1)*T+(T-dx)];
701	y=[0 0 dimY dimY 0];
702	DXF_poly(fid,x,y,vertici,7,1),
703	end
704	DXF_end(fid),
705	fclose(fid),
706	
707	%% POS noise generation
708	dist=rand(nX,nX/2);
709	dist(dist>=soglia)=1;
710	dist(dist <soglia)< td=""></soglia)<>
711	
712	[fid,err]=DXF_start([nome,'_pos.dxf'],10^scal);
713	
714	dx=dimX/nX*DC; dy=0.5;
715	for I=1:nX
716	non_id=[0;find((dist(:,I)));dimX*2+1];
717	if length(non_id)>2
718	if non_id(2)==1
719	non_id(1)=[];
720	end
721	if non_id(end-1)==nY

Electronic Supplementary Material (ESI) for Soft Matter

Soft Matter

722	non_id(end)=[];
723	end
724	end
725	
726	x=[(I-1)*T+(T-dx) I*T I*T (I-1)*T+(T-dx) (I-1)*T+(T-dx)];
727	for J=1:length(non_id)-1
728	$y=[non_id(J) non_id(J) non_id(J+1)-1 non_id(J+1)-1 non_id(J)]*dy;$
729	if non_id(J)+1~=non_id(J+1)
730	DXF_poly(fid,x,y,vertici,7,1),
731	end
732	end
733	
734	end
735	
736	DXF_end(fid),
737	
738	
739	dxf script for Matlab (DXF_start , DXF_poly , DXF_end) were available at:
740	http://school.mech.uwa.edu.au/~jamest/matlab-dxf/Default.html
741	
742	
743	