Supplemental Materials by H. Nakahara et al.

The Role of Palmitic Acid in Pulmonary Surfactant Systems by Langmuir Monolayer Study: Lipid-Peptide Interactions

Hiromichi Nakahara¹, Sannamu Lee¹, Yukihiro Shoyama², and Osamu Shibata^{1,*}

¹Department of Biophysical Chemistry, and ²Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University; 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan

APPENDIX

The monolayer ionization degree (α) is determined by the proton concentration at the surface ($[H^+]_s$) and the surface equilibrium constant for the acid group dissociation (K_s):

$$\frac{\alpha}{1-\alpha} = \frac{K_s}{\left[\mathbf{H}^+\right]_s} \tag{2}$$

If the proton concentration in the bulk $([H^+]_b)$ is known, the surface proton concentration can be calculated using the Boltzmann equation,

$$[\mathrm{H}^{+}]_{\mathrm{s}} = [\mathrm{H}^{+}]_{\mathrm{b}} \exp\left(-\frac{ze\varphi}{kT}\right)$$
(3)

where z denotes the charge number of monolayers, e is the elementary electric charge, and φ is the potential difference of the ionic layer. Furthermore, the Gouy-Chapman approach¹ is used to relate φ_0 to the charge density ($\rho \approx \alpha z e/A$) under the condition of NaCl solution at 298.2 K,

$$\varphi_0 = \frac{2kT}{ze} \sinh^{-1} \left(\frac{1.37\alpha}{A\sqrt{c}} \right)$$
(4)

where *c* (in mol/L) is the 1-1 electrolyte concentration. As for the negatively charged monolayer (z = -1), the following equation is derived from combining eqs. (2)–(4).

$$pH_{b} = pK_{s} + \log\frac{\alpha}{1-\alpha} + 0.87\sinh^{-1}\left(\frac{1.37\alpha}{A\sqrt{c}}\right)$$
(5)

Reference

1. E. Maltseva, V. L. Shapovalov, H. Möhwald and G. Brezesinski, J. Phys. Chem. B, 2006, 110, 919-926.

Supplemental Materials by H. Nakahara et al.

Fig. S1 The π -A and ΔV -A isotherms of (A) PA and (B) Hel 13-5 monolayers on a 0.02 M Tris buffer solution with 0.13 M NaCl at 298.2 K. The subphase pH is prepared to pH 6.4, 7.4, and 8.4.

Supplemental Materials by H. Nakahara et al.

рН 7.4

pH 8.4

Fig. S2 Typical AFM topographic images of the DPPC/PA(= 90/10, by weight)/Hel 13-5 preparation ($X_{\text{Hel } 13-5} = 0.025$) at 35, 45, and 55 mN m⁻¹ on a 0.02 M Tris buffer solution (pH 6.4–8.4) with 0.13 M NaCl at 298.2 K. All images exhibit LC domains of the ternary monolayer, which are expressed by bright contrast in the FM images. The cross-sectional profiles along the scanning line (white lines) are given just below the respective AFM images. The height difference between the arrowheads is indicated in the cross-sectional profile.

Electronic Supplementary Material (ESI) for Soft Matter This journal is C The Royal Society of Chemistry 2011

Supplemental Materials by H. Nakahara et al.

DPPC/TD/Hel 13-5 DPPC/HD/Hel 13-5

Fig. S3 Typical AFM topographic images of the DPPC/TD(= 90/10, by weight)/Hel 13-5 and DPPC/HD(= 90/10, by weight)/Hel 13-5 preparations ($X_{\text{Hel } 13-5} = 0.025$) at 35, 45, and 55 mN m⁻¹ on a 0.02 M Tris buffer solution (pH 7.4) with 0.13 M NaCl at 298.2 K. All images exhibit LC domains of the ternary monolayer, which are expressed by bright contrast in the FM images. The cross-sectional profiles along the scanning line (white lines) are given just below the respective AFM images. The height difference between the arrowheads is indicated in the cross-sectional profile.

Electronic Supplementary Material (ESI) for Soft Matter This journal is C The Royal Society of Chemistry 2011

Supplemental Materials by H. Nakahara et al.

Fig. S4 Typical AFM topographic images of the DPPC/PA(= 90/10, by weight) preparation at 35, 45, and 55 mN m⁻¹ on a 0.02 M Tris buffer solution (pH 7.4) with 0.13 M NaCl at 298.2 K. The cross-sectional profiles along the scanning line (white lines) are given just below the respective AFM images. The height difference between the arrowheads is indicated in the cross-sectional profile.