Electronic Supplementary Information for *Soft Matter* manuscript: New Non-spherical Morphologies from Cross-Linked Biomimetic Diblock Copolymers Using RAFT Aqueous Dispersion Polymerization

Shinji Sugihara^{†,*} Steven P. Armes,^{§,*} Adam Blanazs,[§] and Andrew L. Lewis[‡]

[†]Graduate School of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan, [§]Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK,

[‡]Biocompatibles UK Ltd., Chapman House, Farnham Business Park, Weydon Lane, Farnham, Surrey GU9 8QL, UK.

Figures in Supporting Information

Fig. S1 Conversion vs. time curves for the aqueous RAFT polymerization of MPC at target degrees of polymerization of 50 and 150 in the presence of NaHCO₃ at 70 °C. For more detailed polymerization conditions, see Experimental Section.

Fig. S2 Evolution of M_n and M_w/M_n with conversion for the aqueous RAFT polymerization of MPC at target degrees of polymerization of either 50 or 150 in the presence of NaHCO₃ at 70 °C. For more detailed polymerization conditions, see Experimental Section.

Fig. S3 Typical ¹H NMR spectra recorded for (a) PMPC₅₀ macro-CTA in D₂O and (b) CDAB in CDCl₃ at 25°C as a reference. The inset shows the chemical structures of PMPC₅₀ macro-CTA and CADB with full peak assignments (a - j for PMPC and 1-6 for CDAB).

Fig. S4 Typical GPC curves obtained for the RAFT aqueous dispersion polymerization of HPMA at 70 °C using the PMPC₅₀ macro-CTA targeting mean degrees of polymerization for the PHPMA block of 100 to 400. There is a prominent high molecular weight shoulder, particularly when targeting higher DP PHPMA chains. This is due to a small amount (< 0.20 mol %) dimethacrylate impurity that is known to be present in HPMA monomer due to its propensity to undergo slow transesterification on storage at ambient temperature.³ However, this impurity only causes relatively light branching rather than cross-linking, since DLS studies confirm complete dissolution of these linear PMPC₅₀-PHPMA_m nanolatex particles in methanol, which is a good solvent for both the PMPC and PHPMA blocks.

Fig. S5 Tapping-mode AFM image obtained for the PMPC₅₀-(PHPMA₄₀₀-*stat*-EGDMA₆) 'lumpy rod' particles. (a) Height image (10.0 μ m × 10.0 μ m), (b) amplitude image, (c) cross-sectional image. The dilute aqueous dispersion was deposited onto freshly-cleaved mica and allowed to dry at 20 °C for 24 h prior to analysis.

PMPC₁₅₀-PHPMA₂₀₀

Fig. S6 TEM image of the linear PMPC₁₅₀-PHPMA₂₀₀ spherical nanolatex prepared by RAFT aqueous dispersion polymerization of HPMA at 70 °C using PMPC₅₀ macro-CTA at 10 w/w % solids.