Supporting information

Self-assembly of chiral block and gradient copolymers

Meta M. Bloksma, Stephanie Hoeppener, Cécile D'Haese, Kristian Kempe, Ulrich Mansfeld, Renzo M. Paulus, Jean-François Gohy, Ulrich S. Schubert and Richard Hoogenboom

Contents:

I SEC traces

II Cryo-TEM

- III Angular dependent DLS results
- IV CONTIN size distribution histograms

I SEC traces

Fig. 1 SEC traces (CHCl₃) of the statistical copolymerization of EtOx with **a**) *R*-BuEtOx and **b**) *RS*-BuEtOx, (M/I = 100, EtOx:R(S)-BuEtOx = 70:30; $M_0 = 4$ M).

II Cryo-TEM

Fig. 2 Assembly of five tilted cryo-TEM images of $pEtOx_{56}-b-R$ -BuEtOx₃₈-V that proves the formation of a 3-dimensional fiber-like structure.

III Angular dependent DLS results

Table 1 DLS results*

Polymer	R _h	R _h	R_h	R_h	R_h	R_h
	(30°)	(45°)	(60°)	(90°)	(120°)	(145°)
pEtOx ₆₇ - <i>R</i> -BuEtOx ₁₂ -I	14	13	14	13	14	15
pEtOx ₆₂ - <i>R</i> -BuEtOx ₁₆ -II	22	20	19	19	19	20
pEtOx ₆₄ - <i>R</i> -BuEtOx ₃₀ -III	91 and	85 and	95	86	104	90 and
	230	210				205
pEtOx ₅₉ -R-BuEtOx ₃₁ -IV	95 and	132	121	116	135	85 and
	230					210
pEtOx ₅₆ -R-BuEtOx ₃₈ -V	145	122	104	95	100	87 and
						216
pEtOx ₅₄ -R-BuEtOx ₃₄ -VI	98 and	138	124	116	118	102 and
	254					310
pEtOx ₄₅ -RS-BuEtOx ₁₆ -VII	18 and	18 and	82	15 and	17 and	115
	123	110		85	87	
pEtOx ₄₁ -RS-BuEtOx ₁₉ -VIII	18	17	18	17	17	18
pEtOx ₇₀ -stat-R-BuEtOx ₃₀	12	11	12	12	12	13

* R_h (in nm) measured at different angles for the samples investigated in this study at a concentration of 5 mg mL⁻¹. The reported values correspond to the maxima of the populations calculated in the CONTIN histogram.

IV CONTIN size distribution histograms

Fig. 3 CONTIN distribution functions measured by DLS (90°, 5 mg mL⁻¹) of **a**) pEtOx₆₇-

R-BuEtOx₁₂-I, **b**) $pEtOx_{62}$ -*R*-BuEtOx₁₆-II, **c**) $pEtOx_{64}$ -*R*-BuEtOx₃₀-III, **d**) $pEtOx_{59}$ -*R*-BuEtOx₃₁-IV, **e**) $pEtOx_{56}$ -*R*-BuEtOx₃₈-V, **f**) $pEtOx_{54}$ -*R*-BuEtOx₃₄-VI, g) $pEtOx_{45}$ -*RS*-BuEtOx₁₆-VII and h) $pEtOx_{41}$ -*RS*-BuEtOx₁₉-VIII.