Supporting Information

Amphiphilic Liquid-Crystal Block Copolymer Nanofibers via RAFT-Mediated Dispersion Polymerization

Xuewei Zhang,[†] Stéphanie Boissé,^{†,‡} Chuong Bui,[†] Pierre-Antoine Albouy,[§] Annie Brulet,[#] Min-Hui Li, ^{‡,*} Jutta Rieger,^{†,*} Bernadette Charleux^{\$,*}

- *†* Laboratoire de Chimie des Polymères (LCP), UPMC Sorbonne Universités and CNRS, UMR 7610, 3 rue Galilée, 94200 IVRY, France
- ‡ Institut Curie, CNRS, UMR 168, Laboratoire Physico-Chimie Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- § Laboratoire de Physique des Solides, Université Paris-Sud, CNRS, UMR 8502, 91405 Orsay Cedex, France
- # Laboratoire Léon Brillouin, UMR12 CEA-CNRS, C.E. Saclay, 91191 Gif sur Yvette, France
- \$ Université de Lyon, Univ Lyon 1, CNRS, CPE Lyon, UMR 5265, Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), Equipe LCPP, 43 Bd du 11 novembre 1918, 69616 Villeurbanne, France.

AUTHOR EMAIL ADDRESS:

min-hui.li@curie.fr; jutta.rieger@upmc.fr; bernadette.charleux@lcpp.cpe.fr.

Electronic Supplementary Material (ESI) for Soft Matter This journal is C The Royal Society of Chemistry 2011

<u>1- Characterization of the Chol-TEGA and Chol-TEGMA monomers</u>

Figure S2. 125 MHz ¹³C NMR spectrum of Chol-TEGA in CDCl₃

Figure S3. MALDI-TOF MS analysis of Chol-TEGA

Figure S4. 200 MHz ¹H NMR spectrum of Chol-TEGMA in CDCl₃.

Figure S5. 63 MHz ¹³C NMR spectrum of Chol-TEGMA in CDCl₃.

Figure S6. MALDI-TOF MS analysis of Chol-TEGMA

2- Synthesis and characterization of the P(Chol-TEGA) and P(Chol-TEGMA) homopolymers

In a typical experiment, the polymerization of Chol-TEGA (0.51 g, 7.7×10^{-4} mol) was carried out in a 5 mL septum-sealed flask with DTTC (12.5 mg, 3.4×10^{-5} mol) as a reversible chain transfer agent and ACPA (0.2 mg, 7.1×10^{-6} mol) as an initiator in 1,4-dioxane (0.75 mL). The mixture was deoxygenated with nitrogen for 30 min at 0°C, and placed in a thermostated oil bath at 80 °C under stirring. After 21 hours, the polymerization was quenched by immersion of the flask in ice water. The polymer was purified by 3 successive precipitations in acetone at room temperature and dried under vacuum. The polymerization results were: 92% conversion, $M_n^{TD} = 1.9 \times 10^4$ g.mol⁻¹, $M_w/M_n = 1.22$, dn/dc = 0.094 mL.g⁻¹.

The synthesis of the P(Chol-TEGMA) homopolymer was performed accordingly with PTTC as a RAFT agent: 80 % conversion, $M_n^{TD} = 1.38 \times 10^4 \text{ g.mol}^{-1}$, $M_w/M_n = 1.17$, $dn/dc = 0.099 \text{ mL.g}^{-1}$.

Figure S7. DSC thermograms of the poly(Chol-TEGMA) and poly(Chol-TEGA) homopolymers at heating and cooling rate 10 °C.min⁻¹.

Sample	$M_{\rm n}^{\ TD}$	Tg	(Heating)		(Cooling)		Smectic
	(kg.mol ⁻¹)	(°C)					layer spacing
			T _{LC-I}	Enthalpy	T _{LC-I}	Enthalpy	d (nm)
			(°C)	(J/g)	(°C)	(J/g)	<i>a</i> (IIII)
P(Chol-TEGA)	19.0	16.3	154	3.2	156	4.9	5.5
P(Chol-TEGMA)	19.8	-0.2	102	3.1	124	3.4	5.6

Table S1. Thermal properties and smectic layer spacing d for the P(Chol-TEGA) and P(Chol-TEGMA) homopolymers in bulk.

Glass transition temperature (T_g) was measured by DSC with a heating rate of 10 °C.min⁻¹, liquid crystal-isotropic transition temperature (T_{LC-I}) and transition enthalpy were measured by DSC second cycle with heating or cooling rate 5 °C.min⁻¹. Smectic layer spacing *d* was calculated from SAXS.

Figure S8. Polarizing optical micrographs (POM) of homopolymers a) Poly(Chol-TEGA), b) Poly(Chol-TEGMA).

<u>3- P(AA-co-PEGA)-b-P(Chol-TEGA) block copolymers prepared via RAFT dispersion</u> polymerization at a 1 M monomer concentration

Figure S9. Polymerization of Chol-ATEG in the presence of the P(AA-*co*-PEGA) macroRAFT agent in ethanol/water (95:5, v:v) at 80°C, $[M]_0 = 1.0 \text{ mol.L}^{-1}$, $[M]_0/[\text{macroRAFT}]_0 = 20$ (Table 1, entry **A6**). a) Evolution of the monomer conversion with time; b) evolution of the number-average molar mass (M_n^{TD}) and polydispersity index (M_w/M_n) with monomer conversion; c) evolution of SEC traces with conversion.

Figure S10. Aspect of the polymer dispersions obtained at different monomer concentrations: a) **A6** ($[M]_0 = 1$ M); b) **A1** ($[M]_0 = 0.5$ M); c) **A8** ($[M]_0 = 0.29$ M).

Figure S11. TEM micrographs of the P(AA-*co*-PEGA)-*b*-P(Chol-TEGA) copolymer assemblies. Experiments **A5** and **A6** performed in ethanol/water mixture (95/5) ([Chol-TEGA]₀ = 1.0 M).

A4 (DP_{n 100%} = 86)

Figure S12. Cryo-TEM image of the P(AA-*co*-PEGA)-*b*-P(Chol-TEGA) copolymer nanofibers. Experiment **A4** performed in ethanol/water mixture (95/5) ([Chol-TEGA]₀ = 0.5 M).

Figure S13. X-ray scattering patterns and calculations for P(AA-co-PEGA)-b-P(Chol-TEGA) copolymers dispersions A1, A4 and A5 in ethanol/water mixture (95/5). The underlined *d* values correspond to the smectic layer spacing and L_c is the correlation length of the smectic structure.

4- Characterization of the in situ formed P(MAA-co-PEGMA)-b-P(Chol-TEGMA) nanoassemblies

Figure S14. X-ray scattering patterns and calculated smectic layer spacings d for P(MAA-co-PEGMA)-b-P(Chol-TEGMA) copolymers dispersions M1, M2 and M4 in ethanol/water mixture (95/5). d is the smectic layer spacing.