Supporting Information

Synthesis and redox-responsive self-assembly of ferrocene grafted Anderson-type polyoxometalate complexes

Yi Yan, Bao Li, Qingyi He, Zhenfeng He, Hui Ai, Huanbing Wang, Zhendong Yin, and Lixin Wu*

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin

University, Changchun, P. R. China,

E-mail: wulx@jlu.edu.cn; Fax: +86 431 85193421; Tel: +86 431 85168481

Figure S1. FT-IR spectra of a) ferrocene, b) ethyl 4-ferrocenylbenzoate (2), c)

N-tris(hydroxymethyl)methy (4-ferrocenyl)benzamide (3), and d) SEOP-1.

Figure S2. ESI-MS of SEOP-1.

Figure S3. FT-IR spectrum of SEOP-2.

Figure S4. ESI-MS of SEOP-2.

Figure S5. ¹H NMR spectrum of SEOP–2.

Figure S6. (a) Single crystal structure of SEOP–1, there are three TBA surfactant molecules and one POM in one SEOP–1; (b) extended crystal structure connected by hydrogen bond between terminal oxygen of $MnMo_6$ cluster and hydrogen of ferrocene group in SEOP–1.

Figure S7. TGA diagram of SEOP-1.

Figure S8. TGA diagram of SEOP-2.

Figure S9. Image of the Tyndall scattering of SEOP–2 in $CHCl_3$ and methanol 4:1 (v/v) mixture solvent.

Figure S10. Cyclic voltammogram of virgin ferrocene in DMF at a scan rate of 100 mV/s.

Figure S11. UV-Vis spectra of (a) ferrocene, (b) ethyl 4-ferrocenylbenzoate (2), (c) N-tris(hydroxymethyl)methy (4-ferrocenyl)benzamide (3), and (d) SEOP–1 in the corresponding solution, where the inset is an enlarge section from the range of 315-525 nm.

Figure S12. Solid diffusive reflective UV-Vis spectrum of SEOP-1.

Figure S13. EPR spectrum of SEOP-1 powder measured at room temperature.

Figure S14. Mo3d XPS result of SEOP-1.

Figure S15. SEM image of SEOP-1 self-assemblies in CH₃CN solution.

Figure S16. SEM images of SEOP-2 self-assemblies after addition of some amount of methanol.

Figure S17. The powder X-ray diffraction patterns and the simulated patterns (a) experimental data for SEOP–1, (b) calculated data for SEOP–1, and (c) experimental data for SEOP–2 in the diffraction angle range of $1-50^{\circ}$.

Figure S18. Plot of absorption at 766 nm versus the redox cycle and the corresponding photos.

Figure S19. (a) DLS results of SEOP-2 supramolecular self-assemblies during the redox process,

and (b) the corresponding diameter change upon oxidization by DDQ and reduction by hydrazine.

Figure S20. XRD pattern of SEOP–2 self-assemblies during the redox process: a) SEOP–2 self-assemblies in CHCl₃:CH₃OH mixture with volume ratio of 4:1, b) after the oxidation of DDQ, and c) after the reduction of hydrazine to b).

Table S1. Full elemental analysis results for SEOP-1 and SEOP-2.

Sample		C (%)	H (%)	N (%)	O (%)	Mn (%)	Mo (%)	Fe (%)
SEOP-1 -	found	43.51	5.95	2.76	16.54	2.45	23.86	4.88
	calcd	43.97	6.07	2.85	16.92	2.23	23.42	4.54
SEOP-2 -	found	55.55	8.03	2.34	12.36	1.96	17.45	3.66
	calcd	55.37	8.34	2.07	12.29	1.62	17.01	3.30

Table S2. ESI-MS results for SEOP-1 and SEOP-2, and the corresponding assignment.

Sample	ESI-MS (gmol ⁻¹)	Assignment		
SEOP-1	2216.6	$[M-2TBA]^-$		
SEOP-2	2805.8	[M-2DODA-CHCl ₃ -H ₂ O] [−]		