# Synthesis and Thermal Studies of Aliphatic Polyurethane Dendrimers: A Geometric Approach to the Flory-Fox equation for Dendrimer Glass Transition Temperature.

Alison Stoddart, W. James Feast and Steve P. Rannard\*

**Electronic Supporting Information** 

## Synthetic Details

### Synthesis of 6a:



CDI (0.75 g, 4.62 mmol) was added to a stirred solution of 5a (4.3 g, 3.89 mmol) in toluene (50 mL). The mixture was heated at 60°C for 4 hrs. Subsequently, the reaction mixture was analysed by <sup>1</sup>H NMR spectroscopy and interpretation of the spectrum indicated there was no evidence of the starting materials. The branching unit 4 (0.31 g, 1.95 mmol) was added and the solution was heated for 1 day at 60°C. The reaction mixture was concentrated in vacuo and redissolved in CH<sub>2</sub>Cl<sub>2</sub> (100 mL). The organic phase was subsequently washed with water (3 x 100 mL), dried over MgSO<sub>4</sub> and the solvent removed using a rotary evaporator. The resulting pale yellow oil was purified by column chromatography (silica gel, eluting with EtOAc increasing to EtOAc:MeOH 100:5) and the colourless oil obtained was dried under vacuum (10<sup>-1</sup> mbar) to give **6a** as a colourless oil (2.1 g, 44%).  $T_g =$ 11°C. Found C, 59.08; H, 9.72; N, 12.02%. C<sub>119</sub>H<sub>233</sub>O<sub>29</sub>N<sub>21</sub> requires, C, 59.01; H, 9.70; N, 12.14%. <sup>13</sup>C NMR (62.9 MHz, CD<sub>3</sub>OD)  $\delta$ (ppm)= 14.5, 19.0, 19.6, 21.0, 37.9, 40.1, 55.6, 61.0, 64.1, 66.1, 70.7, 75.2, 158.7, 159.2. <sup>1</sup>H NMR (250 MHz, CD<sub>3</sub>OD)  $\delta$ (ppm)= 0.92 (t, J=7Hz, 48H), 1.12 (d, J=6Hz, 3H), 1.20 (d, J=6Hz, 18H), 1.36 (m, 32H), 1.49 (m, 32H), 2.45-2.62 (m, 42H), 3.10-3.27 (m, 28H), 3.78 (m, 1H), 4.73 (m, 8H), 4.81

(m, obscured by water peak, 6H), 6.64 (s, br, O(CO)NHCH<sub>2</sub>CH<sub>2</sub>), 6.71 (s, br, O(CO)NHCH<sub>2</sub>CH<sub>2</sub>), 6.85 (s, br, O(CO)NHCH<sub>2</sub>CH<sub>2</sub>). m/z (MALDI TOF (Voyager) MS) 2423.6 [M+H]<sup>+</sup>, 2445.2 [M+Na]<sup>+</sup>, 2461.2 [M+K]<sup>+</sup>, calculated M<sub>w</sub> = 2422.25. GPC; M<sub>w</sub> = 2830, PDI = 1.02.

Synthesis of 6b:



The procedure was similar to that described for the synthesis of, but using 5b as the starting material. The oil obtained was purified by column chromatography (silica gel, eluting with EtOAc increasing to EtOAc:MeOH, 100:5) and then purified by preparative GPC (Biobeads, eluting with toluene) to give **6b** as a colourless amorphous solid (48%).  $T_g = 40^{\circ}C$ . Found C, 54.16; H, 9.08; N, 13.83%. C<sub>95</sub>H<sub>185</sub>O<sub>29</sub>N<sub>21</sub> requires, C, 54.71; H, 8.94; N, 14.10%. <sup>13</sup>C NMR (62.9 MHz, CD<sub>3</sub>OD) δ(ppm)= 19.0, 21.0, 28.9, 39.6, 40.0, 55.6, 55.9, 61.0, 64.0, 66.0, 70.7, 79.9, 158.3, 158.7, 158.8. <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) δ(ppm)= 1.12 (d, J=6Hz, 3H), 1.20 (d, J=6.4Hz, 18H), 1.44 (s, 72H), 2.41-2.64 (m, 42H), 3.04-3.24 (m, 28H), 3.78 (m, 1H), 4.85 (m, obscured by water peak, 6H), 6.42 (s, br, O(CO)NHCH<sub>2</sub>CH<sub>2</sub>), 6.71 (s, br, O(CO)NHCH<sub>2</sub>CH<sub>2</sub>), 6.85 (s, br, O(CO)NH CH<sub>2</sub>CH<sub>2</sub>). m/z (ES MS) 2108.2 [M+Na]<sup>+</sup>, 1054.4 [M+H]<sup>2+</sup>, 1065.4 [M+Na]<sup>2+</sup>. m/z (MALDI TOF (Voyager) MS) 2086 [M+H]<sup>+</sup>, 2108 [M+Na]<sup>+</sup>, 2124 [M+K]<sup>+</sup> - and sets of similar peaks at 100 mass intervals below the molecular ion, calculated  $M_w =$ 2085.61. GPC; M<sub>w</sub> = 2300, PDI = 1.01.

Synthesis of 6c:



The procedure was similar to that described above, but using 5c as the starting material. The colourless oil obtained after silica gel chromatography (eluting with EtOAc increasing to EtOAc:MeOH 100:5) was purified further by preparative GPC (Biobeads, eluting with toluene) to give **6c** as a colourless amorphous solid (28%).  $T_g = 40^{\circ}C$ . Found C, 58.05; H, 8.85; N, 12.69%. C<sub>111</sub>H<sub>201</sub>O<sub>29</sub>N<sub>21</sub> requires, C, 58.12; H, 8.83; N, 12.82%. <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>OD)  $\delta$ (ppm)= 19.0, 21.0, 24.9, 26.6, 33.2, 39.9, 40.1, 40.5, 55.5, 55.7, 55.9, 60.9, 64.1, 66.0, 70.7, 73.9, 157.6, 157.7, 157.8. <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD)  $\delta$ (ppm)= 1.12 (d, J=6.4Hz, 3H), 1.45 (d, J=5.6Hz, 18H), 1.25-1.42 (m, 40H), 1.56 (m, 8H), 1.75 (m, 16H), 1.85 (m, 16H), 2.42-2.69 (m, 42H), 3.15-3.25 (m, 28H), 3.78 (m, 1H), 4.57 (m, 8H), 4.84 (m, obscured by water peak, 6H), 6.59 (s, br, O(CO)NHCH<sub>2</sub>CH<sub>2</sub>), 6.71 (s, br, O(CO)NHCH<sub>2</sub>CH<sub>2</sub>), 6.86 (s, br, O(CO)NHCH<sub>2</sub>CH<sub>2</sub>). *m/z* (MALDI TOF (Voyager) MS) 2294.0 [M+H]<sup>+</sup>, 2316.2  $[M+Na]^+$ , 2331.2  $[M+K]^+$ , calculated  $M_w = 2293.91$ . GPC;  $M_w =$ 2440, PDI = 1.01.

Synthesis of 7c:



The procedure was similar to that described for the synthesis of 6a, but using 6c as the starting material. The crude product obtained was purified by column chromatography (silica gel, eluting with EtOAc:MeOH, 100:5) and the colourless solid obtained was purified by preparative GPC (Biobeads, eluting with toluene) to give compound CG40H as a colourless amorphous solid (14%).  $T_g = 48^{\circ}C$ . Found C, 56.95; H, 8.66; N, 12.57%. C<sub>231</sub>H<sub>417</sub>O<sub>61</sub>N<sub>45</sub> requires, C, 57.79; H, 8.75; N, 13.13%. <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>OD)  $\delta$ (ppm)= 19.0, 19.1, 21.1, 24.9, 26.6, 33.2, 39.9, 40.1, 40.4, 40.5, 55.5, 55.7, 60.9, 64.1, 66.0, 70.7, 74.0, 158.6, 158.7, 158.8. <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD)  $\delta$ (ppm)= 1.12 (d, J=6Hz, 3H), 1.19-1.45 (m, 122H), 1.56 (m, 16H), 1.74 (m, 36H), 1.85 (m, 36H), 2.44-2.68 (m, 88H), 3.11-3.20 (m, 60H), 3.78 (m, 1H), 4.57 (m, 16H), 4.84 (m, 14H), 6.59 (s, br, O(CO)NHCH<sub>2</sub>CH<sub>2</sub>), 6.70 (s, br, O(CO)NHCH2CH2), 6.85 (s, br, O(CO)NHCH2CH2). m/z (MALDI TOF (Voyager) MS) 4801.4 [M+H]<sup>+</sup>, 4823.4 [M+Na]<sup>+</sup>, 4839.3 [M+K]<sup>+</sup>, calculated  $M_w = 4801.05$ . GPC;  $M_w = 4190$ , PDI = 1.02.

Synthesis of G2-4-heptyl Dendrimer TAEA:



CDI (0.52 g, 3.21 mmol) was added to a stirred solution of 5a (3.2 g, 2.90 mmol) in toluene (100 mL). The mixture was heated at 60°C for 4 hrs. Subsequently, the reaction mixture was analysed by <sup>1</sup>H NMR spectroscopy and interpretation of the spectrum indicated there was no evidence of the starting materials. Tris(2-aminoethyl)amine (0.14 g, 0.96 mmol) was added and the solution was heated for 20 hrs at 60°C. The reaction mixture was concentrated in vacuo and redissolved in CH<sub>2</sub>Cl<sub>2</sub> (150 mL). The organic phase was subsequently washed with water (3 x 150 mL), dried over MgSO4 and the solvent removed using the rotary evaporator. The crude product was purified by column chromatography (silica gel, eluting with EtOAc increasing to EtOAc:MeOH 100:5) and the colourless oil obtained was purified further by preparative GPC (Biobeads, eluting with toluene) to give G2-4-heptyl Dendrimer TAEA as a sticky colourless oil (0.86 g, 24%).  $T_g = 17^{\circ}C$ . Found C,

58.38; H, 9.55; N, 12.15%.  $C_{174}H_{339}O_{42}N_{31}$  requires, C, 59.07; H, 9.66; N, 12.27%. <sup>13</sup>C NMR (62.9 MHz, CD<sub>3</sub>OD)  $\delta$ (ppm)= 14.5, 19.1, 19.6, 37.9, 40.0, 55.2, 55.6, 60.9, 70.7, 75.1, 158.6, 159.1. <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD)  $\delta$ (ppm)= 0.92 (t, J=7.2Hz, 72H), 1.20 (d, J=6Hz, 27H), 1.36 (m, 48H), 1.50 (m, 48H), 2.50-2.62 (m, 60H), 3.16 (m, 42H), 4.73 (m, 12H), 4.86 (m, 9H), 6.65 (s, br, OC(O)NHCH<sub>2</sub>), 6.76 (s, br, OC(O)NHCH<sub>2</sub>). *m/z* (ES MS) 3558.5 [M+Na]<sup>+</sup>, 1791.5 [M+2Na]<sup>2+</sup>. *m/z* (MALDI TOF (Kratos) MS) 3558 [M+Na]<sup>+</sup>, calculated M<sub>w</sub> = 3537.74. GPC; M<sub>w</sub> = 3680, PDI = 1.01.

#### Synthesis of G2-t-butyl Dendrimer TAEA:



The procedure was the same as that described for the synthesis and purification of G2-4-heptyl Dendrimer TAEA but 5b was used as the starting material to give G2cyclohexyl Dendrimer TAEA as colourless oil (32%).  $T_g =$ Found C, 55.11; H, 8.79; N, 13.46%. 47°C. C<sub>138</sub>H<sub>267</sub>O<sub>42</sub>N<sub>31</sub> requires, C, 54.65; H, 8.87; N, 14.32%. <sup>13</sup>C NMR (62.9 MHz, CD<sub>3</sub>OD) δ(ppm)= 19.0, 28.9, 39.5, 40.0, 55.2, 55.7, 60.9, 70.6, 80.0, 158.4, 158.7. <sup>1</sup>H NMR (250 MHz, CD<sub>3</sub>OD)  $\delta$ (ppm)= 1.21 (d, J=6Hz, 27H), 1.45 (s, 108H), 2.50-2.75 (m, 60H), 3.05-3.25 (m, 42H), 4.85 (m, obscured by water peak, 9H), 6.46 (s, br, OC(O)NHCH<sub>2</sub>), 6.76 (s, br, OC(O)NHCH<sub>2</sub>). m/z (ES MS) 3055.1 [M+Na]<sup>+</sup>, 1539.0 [M/2+Na]<sup>+</sup>. m/z (MALDI TOF (Kratos) MS) 3039  $[M+H]^+$ , calculated  $M_w = 3032.78$ . GPC;  $M_w = 3120$ , PDI = 1.02.

## Synthesis of G2-cyclohexyl Dendrimer TAEA:



The procedure was similar to that described for the synthesis of G2-4-heptyl Dendrimer TAEA but 5c was used as the starting material. The purification step was achieved by column chromatography (silica gel, eluting with EtOAc increasing to EtOAc:MeOH 100:5) and the oil obtained was purified further by preparative GPC (Biobeads, eluting with toluene) to give G2-cyclohexyl Dendrimer TAEA as a colourless amorphous solid (41%).  $T_g = 44^{\circ}C$ . Found C, 57.43; H, 8.70; N, 12.75%. C162H291O42N31 requires, C, 58.16; H, 8.77; N, 12.98%. <sup>13</sup>C NMR (62.9 MHz, CD<sub>3</sub>OD) δ(ppm)= 19.0, 24.8, 26.5, 33.1, 39.9, 55.5, 60.9, 70.7, 73.9, 158.57, 158.62, 158.7. <sup>1</sup>H NMR (250 MHz, CD<sub>3</sub>OD)  $\delta(\text{ppm}) = 1.19$  (d, J=5.5Hz, 27H), 1.39 (m, 60H), 1.55 (m, 12H), 1.75 (m, 24H), 1.85 (m, 24H), 2.48-2.61 (m, 60H), 3.16 (m, 42H), 4.57 (m, 12H), 4.84 (m, obscured by water peak, 9H), 6.58 (s, br, OC(O)NHCH<sub>2</sub>), 6.70 (s, br, OC(O)NHCH<sub>2</sub>). m/z (MALDI TOF (Voyager) MS) 3370.2  $[M+Na]^+$ , 3386.1  $[M+K]^+$ , calculated  $M_w = 3345.23$ . GPC;  $M_w = 2780$ , PDI = 1.05.

## Synthesis of G3-4-heptyl Dendrimer TAEA:



CDI (92 mg, 0.57 mmol) was added to a stirred solution of 6a (1.15 g, 0.47 mmol) in toluene (40 mL) and the mixture was heated at 60°C for 4 Subsequently, the reaction hours. mixture was analysed by <sup>1</sup>H NMR spectroscopy and interpretation of the spectrum indicated no evidence of the presence of starting materials. Tris(2aminoethyl)amine (23 mg, 0.16 mmol) was added to the solution and the mixture was heated for 1 day at 60°C. The reaction mixture was concentrated in vacuo and redissolved in CH2Cl2 (100 mL). The organic phase was subsequently washed with water (3 x 100 mL), dried over MgSO<sub>4</sub> and the solvent removed using the rotary evaporator. The yellow oil obtained was purified by column chromatography (silica gel, eluting with EtOAc:MeOH 100:5 increasing to EtOAc:MeOH 100:10). The

colourless oil obtained was purified further by preparative GPC (Biobeads, eluting with toluene) to give G3-4-heptyl Dendrimer TAEA as an extremely sticky oil (280 mg, 24%).  $T_g = 19^{\circ}$ C. Found C, 57.37; H, 9.50; N, 11.88%.  $C_{366}H_{711}O_{90}N_{67}$  requires, C, 58.68; H, 9.57; N, 12.53%. <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>OD)  $\delta$ (ppm)= 14.6, 19.1, 19.7, 40.0, 40.1, 55.7, 61.0, 70.7, 75.2, 158.7, 158.8, 159.3. <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD)  $\delta$ (ppm)= 0.92 (t, J=7.2Hz, 144H), 1.20 (d, J=6Hz, 63H), 1.36 (m, 96H), 1.50 (m, 96H), 2.51-2.66 (m, 132H), 3.12-3.20 (m, 90H), 4.74 (m, 24H), 4.85 (m, obscured by water peak, 9H), 6.46 (s, br, OC(O)NHCH<sub>2</sub>), 6.76 (s, br, OC(O)NHCH<sub>2</sub>). *m/z* (MALDI TOF (Kratos) MS) 7511.4 [M+Na]<sup>+</sup>, 7527.5 [M+K]<sup>+</sup>, calculated M<sub>w</sub> = 7490.96 and an impurity at 5063.6 corresponding to the two-armed dendrimer. GPC; M<sub>w</sub> = 6410, PDI = 1.01.



MALDI TOF - MS of G3-4-heptyl Dendrimer TAEA

Synthesis of G3-t-butyl Dendrimer TAEA:



The procedure was similar to that described for the synthesis of G3-4heptyl Dendrimer TAEA, but 6b was used as the starting material. After the same purification method G3-t-butyl Dendrimer TAEA was isolated as a white amorphous solid (20%).  $T_g = 49^{\circ}C$ . Found C, 54.46; H, 8.74; N, 13.41%. C<sub>294</sub>H<sub>567</sub>O<sub>90</sub>N<sub>67</sub> requires, C, 54.48; H, 8.82; N, 14.48%. <sup>13</sup>C NMR (125 MHz, CD<sub>3</sub>OD) δ(ppm)= 19.1, 29.0, 39.9, 40.2, 55.6, 55.7, 61.1, 70.9, 80.0, 158.3, 158.6. <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD)  $\delta$ (ppm)= 1.20 (d, J=6.4Hz, 63H), 1.44 (s, 216H), 2.48-2.63 (m, 132H), 3.05-3.25 (m, 90H), 4.85 (m, obscured by water peak, 21H), 6.42 (s, br, OC(O)NHCH<sub>2</sub>), 6.71 (s, br, OC(O)NHCH2). m/z (ES MS) 3235.8 [M+H]<sup>2+</sup>, 3246.9 [M+Na]<sup>2+</sup>, 3257.9  $[M+2Na]^{2+}$ . *m/z* (MALDI TOF (Kratos) MS) 6469  $[M+H]^+$ , calculated  $M_w$  = 6481.05. GPC;  $M_w = 4980$ , PDI = 1.06.



MALDI TOF-MS of G3-t-butyl Dendrimer TAEA

Synthesis of G3-cyclohexyl Dendrimer BTT:



A solution of 6c (0.64 g, 0.28 mmol) and DMAP (90 mg, 0.74 mmol) in benzene (50 mL) was refluxed for 4 hrs with a Dean-Stark trap filled with molecular sieves attached. The mixture was cooled room temperature and 1,3,5to benzenetricarbonyl trichloride (22 mg,  $8.29 \times 10^{-2}$  mmol) was added. The reaction mixture was stirred and heated at reflux temperature (81°C) for 22 hrs and then concentrated in vacuo. The crude product was purified by column chromatography (silica gel, eluting with EtOAc:MeOH, 100:5) and by preparative GPC (Biobeads, eluting with give G3-cyclohexyl toluene) to Dendrimer BTT as a white amorphous solid (290 mg, 50%).  $T_g = 50^{\circ}C$ . Found C, 57.00; H, 8.52; N, 12.92%. C342H603O90N63 requires, C, 58.37; H, 8.64; N, 12.54%. <sup>13</sup>C NMR (100 MHz,

CD<sub>3</sub>OD)  $\delta$ (ppm)= 18.9, 19.1, 24.9, 26.6, 33.2, 40.0, 40.5, 55.5, 55.8, 60.5, 61.0, 70.7, 72.3, 74.0, 133.1, 135.4, 158.6, 158.7, 158.8, 165.7. <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD)  $\delta$ (ppm)= 1.19 (d, J=6Hz, 54H), 1.24-1.41 (m, 129H), 1.55 (m, 24H), 1.73 (m, 48H), 1.84 (m, 48H), 2.48-2.86 (m, 126H), 3.10-3.26 (m, 84H), 4.56 (m, 24H), 4.86 (m, obscured by water peak, 18H), 5.28 (m, 3H), 6.58 (s, br, OC(O)NHCH<sub>2</sub>), 6.71 (s, br, OC(O)NHCH<sub>2</sub>), 8.81 (s, 3H). *m/z* (MALDI TOF (Voyager) MS) 7064.6 [M+Na]<sup>+</sup>, 7080.5 [M+K]<sup>+</sup>, calculated M<sub>w</sub> = 7037.82. GPC; M<sub>w</sub> = 6410, PDI = 1.01.



MALDI TOF-MS of G3-cyclohexyl Dendrimer BTT

Synthesis of G3-t-butyl Dendrimer BTT:



The procedure was similar to that described for the synthesis of G3-cyclohexyl Dendrimer BTT, but 6b was used as the starting material. After the same purification method G3-t-butyl Dendrimer BTT was isolated as a white amorphous solid (48%).  $T_g = 49^{\circ}C$ . Found C, 55.17; H, 8.67; N, 12.52%.  $C_{294}H_{555}O_{90}N_{63}$ requires, C, 55.06; H, 8.72; N, 13.76%. <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>OD) δ(ppm)= 18.9, 19.1, 29.0, 30.9, 40.0, 40.1, 55.7, 61.0, 70.7, 72.3, 80.0, 133.1, 135.4, 158.4, 158.7, 158.8, 165.7. <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD)  $\delta$ (ppm)= 1.20 (d, 54H), 1.44 (m, 225H), 2.49-2.86 (m, 126H), 3.08-3.21 (m, 84H), 4.85 (m, obscured by water peak, 18H), 5.28 (m, 3H), 6.43 (s, br,  $OC(O)NHCH_2),$ 6.73 (s, br,  $OC(O)NHCH_2$ ), 8.80 (s, 3H). GPC;  $M_w =$ 5650, calculated  $M_w = 6412.92$ , PDI = 1.03.

## Graphical Analysis

## Conventional Flory-Fox analysis

Dendrimers comprising TAEA cores



Dendrimers comprising BTT cores



## Comparison of modified Flory-Fox vs Flory-Fox analysis



Dendrimers comprising TAEA cores and *t*-butyl surface functionality

Dendrimers comprising TAEA cores and 4-heptyl surface functionality



Dendrimers comprising BTT cores and cyclohexyl surface functionality



# Example calculations of $(ne/M)_{\infty}$

| Generation | Molecular Weight | number of end groups (ne) | ne/M        | $ne/M - (ne/M)\infty$ |
|------------|------------------|---------------------------|-------------|-----------------------|
| 1          | 413.56           | 2                         | 4.83610E-03 | 1.65E-03              |
| 2          | 1040.36          | 4                         | 3.84480E-03 | 6.54E-04              |
| 3          | 2293.96          | 8                         | 3.48740E-03 | 2.97E-04              |
| 4          | 4801.16          | 16                        | 3.33250E-03 | 1.42E-04              |
| 5          | 9815.56          | 32                        | 3.26010E-03 |                       |
| 6          | 19844.36         | 64                        | 3.22510E-03 |                       |
| 7          | 39901.96         | 128                       | 3.20790E-03 |                       |
| 8          | 80017.16         | 256                       | 3.19930E-03 |                       |
| 9          | 160247.56        | 512                       | 3.19510E-03 |                       |
| 10         | 320708.36        | 1024                      | 3.19290E-03 |                       |
| 11         | 641629.96        | 2048                      | 3.19190E-03 |                       |
| 12         | 1283473.16       | 4096                      | 3.19130E-03 |                       |
| 13         | 2567159.56       | 8192                      | 3.19110E-03 |                       |
| 14         | 5134532.36       | 16384                     | 3.19090E-03 |                       |
| 15         | 10269277.96      | 32768                     | 3.19090E-03 |                       |
| 16         | 20538769.16      | 65536                     | 3.19080E-03 |                       |
| 17         | 41077751.56      | 131072                    | 3.19080E-03 |                       |
| 18         | 82155716.36      | 262144                    | 3.19080E-03 |                       |
| 19         | 164311646        | 524288                    | 3.19080E-03 |                       |
| 20         | 328623505.2      | 1048576                   | 3.19080E-03 |                       |
| 21         | 657247223.6      | 2097152                   | 3.19080E-03 |                       |
| 22         | 1314494660       | 4194304                   | 3.19080E-03 |                       |
| 23         | 2628989534       | 8388608                   | 3.19080E-03 |                       |
| 24         | 5257979281       | 16777216                  | 3.19080E-03 |                       |
| 25         | 10515958776      | 33554432                  | 3.19080E-03 |                       |
| 26         | 21031917764      | 67108864                  | 3.19080E-03 |                       |
| 27         | 42063835742      | 134217728                 | 3.19080E-03 |                       |
| 28         | 84127671697      | 268435456                 | 3.19080E-03 |                       |
| 29         | 1.68255E+11      | 536870912                 | 3.19080E-03 |                       |
| 30         | 3.36511E+11      | 1073741824                | 3.19080E-03 |                       |

Cyclohexyl functional dendrons ( GREY = experimental data, blue =  $(ne/M)\infty$  values)

| Generation | Molecular Weight | Aolecular Weight number of end groups (ne) ne/M |             |          |  |
|------------|------------------|-------------------------------------------------|-------------|----------|--|
| 1          | 1561.17          | 6                                               | 3.84330E-03 | 8.08E-04 |  |
| 2          | 3537.82          | 12                                              | 3.39190E-03 | 3.56E-04 |  |
| 3          | 7491.14          | 24                                              | 3.20380E-03 | 1.68E-04 |  |
| 4          | 15397.77         | 48                                              | 3.11730E-03 |          |  |
| 5          | 31211.03         | 96                                              | 3.07580E-03 |          |  |
| 6          | 62837.55         | 192                                             | 3.05550E-03 |          |  |
| 7          | 126090.59        | 384                                             | 3.04540E-03 |          |  |
| 8          | 252596.67        | 768                                             | 3.04040E-03 |          |  |
| 9          | 505608.83        | 1536                                            | 3.03790E-03 |          |  |
| 10         | 1011633.15       | 3072                                            | 3.03670E-03 |          |  |
| 11         | 2023681.79       | 6144                                            | 3.03610E-03 |          |  |
| 12         | 4047779.07       | 12288                                           | 3.03570E-03 |          |  |
| 13         | 8095973.63       | 24576                                           | 3.03560E-03 |          |  |
| 14         | 16192362.75      | 49152                                           | 3.03550E-03 |          |  |
| 15         | 32385140.99      | 98304                                           | 3.03550E-03 |          |  |
| 16         | 64770697.47      | 196608                                          | 3.03540E-03 |          |  |
| 17         | 129541810.4      | 393216                                          | 3.03540E-03 |          |  |
| 18         | 259084036.4      | 786432                                          | 3.03540E-03 |          |  |
| 19         | 518168488.2      | 1572864                                         | 3.03540E-03 |          |  |
| 20         | 1036337392       | 3145728                                         | 3.03540E-03 |          |  |
| 21         | 2072675199       | 6291456                                         | 3.03540E-03 |          |  |
| 22         | 4145350814       | 12582912                                        | 3.03540E-03 |          |  |
| 23         | 8290702043       | 25165824                                        | 3.03540E-03 |          |  |
| 24         | 16581404502      | 50331648                                        | 3.03540E-03 |          |  |
| 25         | 33162809420      | 100663296                                       | 3.03540E-03 |          |  |
| 26         | 66325619256      | 201326592                                       | 3.03540E-03 |          |  |
| 27         | 1.32651E+11      | 402653184                                       | 3.03540E-03 |          |  |
| 28         | 2.65302E+11      | 805306368                                       | 3.03540E-03 |          |  |
| 29         | 5.30605E+11      | 1610612736                                      | 3.03540E-03 |          |  |
| 30         | 1.06121E+12      | 3221225472                                      | 3.03540E-03 |          |  |

4-Heptyl functional TAEA Dendrimers (GREY = experimental data, blue =  $(ne/M)\infty$  values)

| Generation | Molecular Weight | number of end groups (ne) | ne/M        | $ne/M - (ne/M)\infty$ |  |
|------------|------------------|---------------------------|-------------|-----------------------|--|
| 1          | 1240.56          | 6                         | 4.83650E-03 | 1.36E-03              |  |
| 2          | 2964.73          | 12                        | 4.04760E-03 | 5.68E-04              |  |
| 3          | 6413.07          | 24                        | 3.74240E-03 | 2.62E-04              |  |
| 4          | 13309.75         | 48                        | 3.60640E-03 |                       |  |
| 5          | 27103.11         | 96                        | 3.54200E-03 |                       |  |
| 6          | 54689.83         | 192                       | 3.51070E-03 |                       |  |
| 7          | 109863.27        | 384                       | 3.49530E-03 |                       |  |
| 8          | 220210.15        | 768                       | 3.48760E-03 |                       |  |
| 9          | 440903.91        | 1536                      | 3.48380E-03 |                       |  |
| 10         | 882291.43        | 3072                      | 3.48180E-03 |                       |  |
| 11         | 1765066.47       | 6144                      | 3.48090E-03 |                       |  |
| 12         | 3530616.55       | 12288                     | 3.48040E-03 |                       |  |
| 13         | 7061716.71       | 24576                     | 3.48020E-03 |                       |  |
| 14         | 14123917.03      | 49152                     | 3.48010E-03 |                       |  |
| 15         | 28248317.67      | 98304                     | 3.48000E-03 |                       |  |
| 16         | 56497118.95      | 196608                    | 3.48000E-03 |                       |  |
| 17         | 112994721.5      | 393216                    | 3.48000E-03 |                       |  |
| 18         | 225989926.6      | 786432                    | 3.47990E-03 |                       |  |
| 19         | 451980336.9      | 1572864                   | 3.47990E-03 |                       |  |
| 20         | 903961157.4      | 3145728                   | 3.47990E-03 |                       |  |
| 21         | 1807922798       | 6291456                   | 3.47990E-03 |                       |  |
| 22         | 3615846080       | 12582912                  | 3.47990E-03 |                       |  |
| 23         | 7231692644       | 25165824                  | 3.47990E-03 |                       |  |
| 24         | 14463385772      | 50331648                  | 3.47990E-03 |                       |  |
| 25         | 28926772027      | 100663296                 | 3.47990E-03 |                       |  |
| 26         | 57853544538      | 201326592                 | 3.47990E-03 |                       |  |
| 27         | 1.15707E+11      | 402653184                 | 3.47990E-03 |                       |  |
| 28         | 2.31414E+11      | 805306368                 | 3.47990E-03 |                       |  |
| 29         | 4.62828E+11      | 1610612736                | 3.47990E-03 |                       |  |
| 30         | 9.25657E+11      | 3221225472                | 3.47990E-03 |                       |  |

*t*-Butyl functional BTT Dendrimers (GREY = experimental data, blue =  $(ne/M)\infty$  values)

## Analysis of Wooley *et al*<sup>1</sup>data and comparison of geometric progression, Flory-Fox and modified Flory-Fox approaches

|         | Tg  |       |         |                |                   | (ne/M)-  |          |             |                          |
|---------|-----|-------|---------|----------------|-------------------|----------|----------|-------------|--------------------------|
|         | (K) | М     | 1/M     | n <sub>e</sub> | n <sub>e</sub> /M | (ne/M)∞  | $2^{Gn}$ | $2^{Gn}C^2$ | $1/(2^{Gn}C^2-CA)$       |
| [G1]-OH | 255 | 320   | 0.00313 | 3              | 0.00938           | 0.004658 | 2        | 89888       | 1.47406x10 <sup>-5</sup> |
| [G2]-OH | 285 | 744   | 0.00134 | 5              | 0.00672           | 0.002003 | 4        | 179776      | 6.34003x10 <sup>-6</sup> |
| [G3]-OH | 305 | 1592  | 0.00063 | 9              | 0.00565           | 0.000936 | 8        | 359552      | 2.96293x10 <sup>-6</sup> |
| [G41-OH | 312 | 3288  | 0.0003  | 17             | 0.00517           | 0.000453 | 16       | 719104      | 1.4346x10 <sup>-6</sup>  |
| [G51-OH | 315 | 6680  | 0.00015 | 33             | 0.00494           | 0.000223 | 32       | 1438208     | 7.06135x10 <sup>-7</sup> |
| [G61-OH | 316 | 13464 | 7.4E-05 | 65             | 0.00483           | 0.000111 | 64       | 2876416     | 3.5034x10 <sup>-7</sup>  |

The polybenzylether dendrons exhibit a geometric progression of molecular weight that is described by the equation 5 (see manuscript)

$$M_{Gn} = 2(M_{Gn-1}) + A$$

The factor A can therefore be determined as A = 104Da

The factor B is determined by equation 6 (see manuscript ) as the generation 1 molecular weight minus the factor A, ie

 $B = M_{G1} - A$ 

B is readily determined to be B = 320 - A = 216 Da

Using equation 8 (see manuscript) it is possible to determine the molecular weight of any generation n.

$$M_{Gn} = B2^{Gn-1} + A2^{Gn} - A$$

eg Generation  $6 = 216(2^5) + 104(2^6) - 104 = 6912 + 6656 - 104 = 13464$  Da

Factor C is defined a C=B/2+A and is therefore  $\underline{C} = 212 \text{ Da}$ 

With these values (A = 104 Da; B = 216 Da; C = 212 Da), equation 18 (see manuscript) may be used to determine  $T_{g\infty}$  through a plot of  $T_{g,Gn}$  vs.  $1/(2^{Gn}C^2-CA)$ .

$$T_{g,Gn} = T_{g\infty} - K'' \left(\frac{1}{2^{Gn} C^2 - CA}\right)$$

Comparative graphs for the dendrons of the Wooley *et al*<sup>1</sup> paper are shown below.



Calculated  $T_{g\infty}$  values: Flory-Fox analysis gives 317.17072K; Modified Flory-Fox analysis gives 317.16857K.



Calculated  $T_{g\infty}$  values: Geometric progression analysis gives 317.17072K.

| Generation | Surface          | $MW^b$           | $2^{Gn}$ | Α   | В   | С   | 1/<br>Cn 2                   | 1/M                   | (ne/M)-                 | Tg (K) |
|------------|------------------|------------------|----------|-----|-----|-----|------------------------------|-----------------------|-------------------------|--------|
|            |                  |                  |          |     |     |     | $(2^{Gm}C^2 - C^2)$          |                       | (ne/M) <sub>∞</sub>     |        |
| 1          | Н                | 320              | 2        | 104 | 216 | 212 | $1.47 \times 10^{-5}$        | 3.13x10 <sup>-3</sup> | 4.66x10 <sup>-3</sup>   | 255    |
| 2          | Н                | 744              | 4        | 104 | 216 | 212 | 6.34x10 <sup>-6</sup>        | $1.34 \times 10^{-3}$ | $2.00 \times 10^{-3}$   | 285    |
| 3          | Н                | 1592             | 8        | 104 | 216 | 212 | 2.96x10 <sup>-6</sup>        | 6.28x10 <sup>-4</sup> | 9.36x10 <sup>-4</sup>   | 305    |
| 4          | Н                | 3288             | 16       | 104 | 216 | 212 | 1.43x10 <sup>-6</sup>        | 3.04x10 <sup>-4</sup> | 4.53x10 <sup>-4</sup>   | 312    |
| 5          | Н                | 6680             | 32       | 104 | 216 | 212 | 7.06x10 <sup>-7</sup>        | 1.50x10 <sup>-4</sup> | 2.23x10 <sup>-4</sup>   | 315    |
| 6          | Н                | 13464            | 64       | 104 | 216 | 212 | 3.50x10 <sup>-7</sup>        | 7.43x10 <sup>-5</sup> | 1.11x10 <sup>-4</sup>   | 316    |
| 1          | Br               | 478              | 2        | 104 | 374 | 291 | 7.19x10 <sup>-6</sup>        | $2.09 \times 10^{-3}$ | $2.84 \times 10^{-3}$   | 271    |
| 2          | Br               | 1060             | 4        | 104 | 374 | 291 | 3.24x10 <sup>-6</sup>        | 9.43x10 <sup>-4</sup> | $1.28 \times 10^{-3}$   | 309    |
| 3          | Br               | 2224             | 8        | 104 | 374 | 291 | 1.55x10 <sup>-6</sup>        | $4.50 \times 10^{-4}$ | 6.10x10 <sup>-4</sup>   | 316    |
| 4          | Br               | 4552             | 16       | 104 | 374 | 291 | 7.55x10 <sup>-7</sup>        | 2.20x10 <sup>-4</sup> | 2.98x10 <sup>-4</sup>   | 325    |
| 1          | CN               | 370              | 2        | 104 | 266 | 237 | 1.14x10 <sup>-5</sup>        | 2.70x10 <sup>-3</sup> | 3.89x10 <sup>-3</sup>   | 287    |
| 2          | CN               | 844              | 4        | 104 | 266 | 237 | 5.00x10 <sup>-6</sup>        | 1.18x10 <sup>-3</sup> | $1.70 \times 10^{-3}$   | 327    |
| 3          | CN               | 1792             | 8        | 104 | 266 | 237 | 2.35x10 <sup>-6</sup>        | 5.58x10 <sup>-4</sup> | 8.03x10 <sup>-4</sup>   | 334    |
| 4          | CN               | 3688             | 16       | 104 | 266 | 237 | 1.14x10 <sup>-6</sup>        | $2.71 \times 10^{-4}$ | 3.90x10 <sup>-4</sup>   | 349    |
| 1          | C-2 <sup>a</sup> | 366 <sup>a</sup> | 2        | 58  | 308 | 212 | 1.29x10 <sup>-5</sup>        | $2.73 \times 10^{-3}$ | 7.47x10 <sup>-4</sup>   | 270    |
| 2          | C-2              | 790              | 4        | 58  | 308 | 212 | 5.97x10 <sup>-6</sup>        | $1.27 \times 10^{-3}$ | 3.46x10 <sup>-4</sup>   | 287    |
| 2          |                  | 1656             | 0        | 50  | 200 | 010 | <b>2</b> 00 10 <sup>-6</sup> | 6 1 1 10-4            | 1 (7 10-4               | 200    |
| 3          | C-2              | (1638)           | 8        | 58  | 308 | 212 | 2.88x10*                     | 6.11x10               | 1.6/x10                 | 306    |
| 4          | C-2              | (3334)           | 16       | 58  | 308 | 212 | 1.41x10 <sup>-6</sup>        | 3.00x10 <sup>-4</sup> | 8.20x10 <sup>-5</sup>   | 311    |
| 5          | C-2              | 6750<br>(6726)   | 32       | 58  | 308 | 212 | $7.01 \times 10^{-7}$        | $1.49 \times 10^{-4}$ | $4.07 \times 10^{-5}$   | 311    |
| 5          | C-2              | 13542            | 52       | 50  | 500 | 212 | 7.01X10                      | 1.47810               | 4.07/10                 | 511    |
| 6          | C-2              | (13510)          | 64       | 58  | 308 | 212 | 3.49x10 <sup>-7</sup>        | 7.40x10 <sup>-5</sup> | 2.02x10 <sup>-5</sup>   | 312    |
| 1          | C-3              | 576              | 2        | 60  | 516 | 318 | 5.46x10 <sup>-6</sup>        | $1.74 \times 10^{-3}$ | 4.90x10 <sup>-4</sup>   | 282    |
| 2          | C-3              | 1212             | 4        | 60  | 516 | 318 | 2.59x10 <sup>-6</sup>        | $8.25 \times 10^{-4}$ | $2.32 \times 10^{-4}$   | 298    |
| 3          | C-3              | 2484             | 8        | 60  | 516 | 318 | $1.27 \times 10^{-6}$        | $4.03 \times 10^{-4}$ | $1.12 \times 10^{-4}$   | 309    |
| 4          | C-3              | 5026             | 16       | 60  | 516 | 318 | 6.25x10 <sup>-7</sup>        | 1.99x10 <sup>-4</sup> | 5.63x10 <sup>-5</sup>   | 312    |
| 5          | C-3              | 10126            | 32       | 60  | 516 | 318 | 3.11x10 <sup>-7</sup>        | 9.89x10 <sup>-5</sup> | 2.80x10 <sup>-5</sup>   | 314    |
| 6          | C-3              | 20292            | 64       | 60  | 516 | 318 | 1.55x10 <sup>-7</sup>        | 4.93x10 <sup>-5</sup> | 1.40x10 <sup>-5</sup>   | 315    |
| 1          | C-OH             | 714              | 2        | 102 | 612 | 408 | 3.43x10 <sup>-6</sup>        | $1.40 \times 10^{-3}$ | $1.05 \times 10^{-3}$   | 446    |
| 2          | C-OH             | 1530             | 4        | 102 | 612 | 408 | 1.60x10 <sup>-6</sup>        | 6.54x10 <sup>-4</sup> | 4.90x10 <sup>-4</sup>   | 458    |
| 3          | C-OH             | 3162             | 8        | 102 | 612 | 408 | 7.75x10 <sup>-7</sup>        | 3.16x10 <sup>-4</sup> | $2.37 \times 10^{-4}$   | 467    |
| 4          | C-OH             | 6426             | 16       | 102 | 612 | 408 | $3.81 \times 10^{-7}$        | $1.56 \times 10^{-4}$ | $1.17 \text{x} 10^{-4}$ | 474    |

Data for all materials described in Wooley  $et al^1$  report with calculations for geometric progression analysis

<sup>a</sup> This molecule is a core rather than a dendrimer

<sup>b</sup> Values in brackets are corrected molecular weights; values without brackets are molecular weights reported from measurement

<sup>1</sup> K. L. Wooley, C. J. Hawker, J. M. Pochan and J. M. J. Fréchet, Macromolecules, 1993, **26**, 1514.