Electronic Supplementary Material (ESI) for Soft Matter

Core-Shell Microgels as "Smart" Carriers for Enzymes

Nicole Welsch,^{*a*} Alisa L. Becker^{*a*}, Joachim Dzubiella^{*a,b*} and Matthias Ballauff*^{*a,b*}

^a Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany. Fax: 4930 8062 42308; Tel: 4930 8062 43071; E-mail: matthias.ballauff@helmholtz-berlin.de
^b Department of Physics, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany

Materials and Methods

Theoretical analysis of the ITC data

This section briefly explains the underlying model which was used to determine the binding constant *K*, the total number of adsorbed proteins *N* and the enthalpy change of the overall process ΔH_{itc} from the experimental raw ITC data. For a more detailed description see ref¹:

ITC measures stepwise heat changes ΔQ_i during the course of the titration experiment where the protein solution is stepwise injected into the microgel dispersion. Before the heat data can be subjected to an equilibrium binding model the integrated heat change after each injection must be corrected by the integrated heat of dilution of the protein and microgel solution.

For the adsorption of lysozyme on oppositely charged microgels a one-site model was applied with N identical binding sites as the sigmoid shape of the ITC curve does no imply different kind of binding sites. Therefore the binding constant is given by the Langmuir-Isotherm:

$$K = \frac{\Theta}{(1-\Theta)[P]_u} = \frac{\Theta}{(1-\Theta)([P]_t - N\Theta[M]_t)}$$
(1)

where Θ is the fraction of sites containing bound protein and $[P]_u$ is the concentration of unbound protein. The unknown value of $[P]_u$ can expressed by the total protein and microgel concentrations $[P]_t$ and $[M]_t$.

The amount of heat Q evolved on addition of protein depends on the amount of bound protein which is given by N, Θ , $[M]_t$ and the total volume V and the molar enthalpy change ΔH_{itc} :

$$Q = N\Theta[M]_{t} V \Delta H_{itc}$$
⁽²⁾

Combining of equation (1) and (2) leads to an expression which relates Q to the binding

constant *K* and the total protein concentration [*P*]_{*t*}:

$$Q = \frac{N[M]_{t} V \Delta H_{itc}}{2} \left[1 + \frac{[P]_{t}}{N[M]_{t}} + \frac{1}{NK[M]_{t}} - \sqrt{\left(1 + \frac{[P]_{t}}{N[M]_{t}} + \frac{1}{NK[M]_{t}}\right)^{2} - \frac{4[P]_{t}}{N[M]_{t}}} \right]$$
(3)

The differential heat ΔQ_i , i.e. the change of heat from injection *i*-1 to *i* is given by eq. (4):

$$\Delta Q_{i} = Q_{i} - Q_{i-1} + \frac{dV_{i}}{V} \left(\frac{Q_{i} + Q_{i-1}}{2}\right)$$
(4)

In this model the parameters N, K and ΔH_{itc} were determined by least square curve fitting using equation (3) and (4). On this way, the initial values of N, K and ΔH_{itc} are improved by standard Marquardt methods until no further improvement in the fit occurs with continued iteration.

Figures and Tables

Table S1. Thermodynamic and binding parame	eters for lysozyme adsorption on negatively
charged core-shell microgels in 10 mM MOPS	pH 7.2 at different salt concentrations.

<i>T</i> [K]	Buffer (all	N_b	$K[M^{-1}]$	ΔG_{bind} [kJ mol ⁻¹]	ΔH_{itc} [kJ mol ⁻¹]
	contain 2 mM				
	NaN ₃)				
288	10 mM MOPS	57300 ±210	1.83x10 ⁶	-34.5 ±0.1	49.4 ±0.2
			$\pm 1.1 \times 10^{5}$		
293	10 mM MOPS	57400 ±190	2.24×10^{6}	-35.6 ±0.2	53.4 ±0.3
			$1.4 \mathrm{x} 10^5$		
298	10 mM MOPS	60100 ±190	2.62×10^6	-36.6 ±0.2	60.7 ±0.3
			$\pm 1.7 x 10^{5}$		
303	10 mM MOPS	60100 ±220	2.84×10^{6}	-37.4 ±0.2	71.6 ±0.4
			$\pm 2.2 x 10^{5}$		
288	10 mM MOPS	50200 ±390	3.54x10 ⁵	-30.6 ± 0.1	58.4 ±0.6
	10 mM NaCl		$\pm 2.0 \mathrm{x} 10^4$		
293	10 mM MOPS	50900 ±340	4.81x10 ⁵	-31.2 ± 0.1	61.2 ±0.5
	10 mM NaCl		$\pm 2.8 x 10^4$		
298	10 mM MOPS	52800 ±260	6.25x10 ⁵	-33.1 ±0.1	66.1 ±0.4
	10 mM NaCl		$\pm 3.0 x 10^4$		
303	10 mM MOPS	54700 ±370	7.55x10 ⁵	-34.1 ±0.2	74.0 ±0.6
	10 mM NaCl		$\pm 5.5 \times 10^4$		
288	10 mM MOPS	34300 ±200	1.33x10 ⁵	-28.3 ±0.1	69.7 ±0.6
	25 mM NaCl		$\pm 2.7 \times 10^{3}$		
293	10 mM MOPS	39500 ±220	1.71x10 ⁵	-29.4 ±0.1	65.7 ±0.5
	25 mM NaCl		$\pm 4.3 \times 10^{3}$		
298	10 mM MOPS	37600 ±360	1.85x10 ⁵	-30.1 ±0.1	83.8±1.0
	25mM NaCl		$\pm 8.1 \times 10^{3}$		
303	10 mM MOPS	45900 ±220	2.90x10 ⁵	-31.7 ±0.1	73.3 ±0.5
	25 mM NaCl		$\pm 8.8 \times 10^{3}$		

Table S2. Thermodynamic and binding parameters for lysozyme adsorption on negatively	,
charged core-shell microgels in 5 mM PIPES pH 7.2 at different temperatures.	

0	0	1		1	
<i>T</i> [K]	Buffer (all	N_b	$K[M^{-1}]$	ΔG_{bind} [kJ mol ⁻¹]	ΔH_{itc} [kJ mol ⁻¹]
	contain 2 mM				
	NaN ₃)				
288	5 mM PIPES	58100 ±310	1.04×10^{6}	-33.2 ±0.2	46.3 ±0.3
			$\pm 7.4 \mathrm{x} 10^4$		
293	5 mM PIPES	60500 ± 440	1.26x10 ⁶	-34.2 ± 0.3	49.1 ±0.4
			1.4×10^5		
298	5 mM PIPES	61400 ±450	1.38x10 ⁶	-35.0 ± 0.3	56.2 ±0.5
			$\pm 1.6 \times 10^5$		
303	5 mM PIPES	63100 ±450	1.82×10^{6}	-36.3 ± 0.3	60.7 ± 0.6
			$\pm 2.3 \times 10^{5}$		

4-Methylumbelliferyl-β-D-N,N',N"-triacetylchitotrioside (GlcNAc)₃₋-MeU

Methylumbelliferone MeU

Figure S1. Reaction equation for the hydrolysis of (GlcNAc)₃-MeU catalyzed by lysozyme.

Figure S2. Excitation and emission spectra of MeU $(1.24 \times 10^{-6} \text{ M})$ in 10 mM MOPS pH 7.2 at 293 K. The excitation wavelength of the emission spectrum was 360 nm.

Figure S3. Fluorescence intensity as function of time for the conversion of $(GlcNAc)_3$ -MeU for concentrations ranging from 1.6×10^{-5} to 1.3×10^{-4} M at 315 K in 10 mM MOPS pH 7.2. The excitation wavelength λ_{ex} was 360 nm and the emission wavelength λ_{em} was 450 nm. The reaction was catalyzed by a) 0.05 g/L free lysozyme and b) 0.02 g/L adsorbed lysozyme.

Figure S4. FT-IR spectra of the charged core-shell microgel before and after adsorption of lysozyme in 10 mM MOPS pH 7.2 at 298 K. The spectra were normalized to a microgel concentration of 1 wt-%. Microgel particles with immobilized lysozyme carry 660 mg protein per gram microgel.