Fmoc-diphenylalanine Hydrogels: Understanding the Variability in Reported Mechanical Properties

Jaclyn Raeburn,^{*a*} Guillaume Pont,^{*b*} Lin Chen,^{*a*} Yann Cesbron,^{*a,c*} Raphaël Lévy^{*c*} and Dave J. Adams^{**a*}

^a Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, U.K. ^b Ecole Nationale Superieure de Clermont Ferrand, Ensemble Scientifique des Cézeaux, 24 Avenue des Landais - BP 10187, 63174 AUBIERE Cedex – FRANCE

^c Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.

E-mail: <u>d.j.adams@liverpool.ac.uk</u>

SUPPORTING INFORMATION

Ref	G'	G "	Gelation method	Geometry
2a	~1000 Pa	Not obtained	FmocFF (2 mg/mL, 5	Cone-plate
	(2mg/mL)		mg/mL, 10 mg/mL)	60mm/1° and
	~10000 Pa		Gel formed from diluting	40mm/4°
	(5mg/mL)		FmocFF/HFIP stock solution	AR 2000 (TA
	~30000 Pa		100 mg/mL and 25 mg/mL	instrument, UK)
	(10mg/mL)		to certain concentration by	
<u>.</u>	A weak flowing cal	a formed between 0.22	water	No mboology
20	A weak flowing get i	s formed between 0.22	FINOCFF Gala can be formed 0.22	no meelogy
	and 1.07 wt%, $pH < c$)	2 14 wt% by adding HCl	measurements
20	The gels could be sta	hle unstable firm and	$E_{\text{moc}} = \frac{1000}{1000} \text{ mm}^{-1}$	No rheology
20	soft depending on the	buffers used.	gels formed by diluting	measurements
	sore depending on the		FmocFF/DMSO 100 mg/mL	
			with H ₂ O.	
			At 20°C	
2d	~10000 Pa (neutral	~1000 Pa (neutral	FmocFF (20 mM).	Cone-Plate
	pH)	pH)	At 25 °C by adding HCl to	40mm/4°
			the initial pH 9 stock	Bohlin C-CVO
			solutions	a N
2e	~21.2 kPa(pH 7.5)	G'/G'' = 4.8 (pH'/.5)	FmocFF (20 mM),	Cone-Plate $40mm/4^{\circ}$
			standard cultura madium	4011111/4 Roblin C CVO
			(DMFM) incubated for 1 h	Domini C-CVO
			at 37 °C in a humidified	
			atmosphere	
			with 5% CO ₂	
2f	~10000 Pa	Not obtained	FmocFF (5 mg/mL)	Parallel-plate (gap
			Gels formed from diluting	0.6mm) and 210 uL
			FmocFF/DMSO 100mg/mL	sample used for
			or 25 mg/mL stock solution	measurements.
			to 5 mg/mL by water.	AR G2 (TA)
			Room Temperature	Instrument, UK)
2g	~1.9 kPa(pH 7.2)	Not obtained (pH 7.2)	FmocFF (10-20 mM)	Cone-Plate
			pH switch by adding HCl.	20mm/2°
			Gelation at 20 or 37°C with	Bohlin C-VOR
			and without DMEM.	NT 1 1
2h	A transparent gel sho	wn in figure	FmocFF (0.5-5 mg/mL)	No rheology
			EmocEEOH/DMSO	measurement
			100mg/mL stock solution by	
			water containing 0.2mM	
			HPTS .	
2i	~ 1 Pa(at pH 9.0)	~0.8 Pa (at pH	FmocFF (10 mM)	Parallel plate with a
	~0.01 Pa(at pH	9.0)	pH switch by adding HCl to	diameter 40mm.
	7.6)	~0.05 Pa (at pH	pH 10.5 stock solution.	Bohlin C-CVO
		7.6)	Heating up to 75-80 °C for 1	
			^o C for relation	
21	Transparent Gel		E for geration FmocFF 2 mg/mI	No rheology
<i>4</i> J	ransparent Oer		Diluting 100 mg/mL	measurements
			FmoFFOH/HFIP stock	measurements
			solution with deionised	
			water.	
2k	Not determined . Gel	s at pH 7-8 (opaque at	FmocFF (3.654X10 ⁻⁵ mol in	Vane-Cup
	low pH)		2.5 mL), GdL triggered	Rheometric
				Scientific ARES

				Vane-Cup
21	No gel description.		FmocFF (10 mg/mL)	No rheology
			Gels formed by diluting 25	measurements
			mg/mL FmocFFOH/DMSO	
			solution by water containing	
			0.01 M QDS and 1 mg/mL	
			Enzyme (GOX or HRP)	
2m	~2000 Pa (Low	~200 Pa (Low shear,	FmocFF (20 mM, 1 wt%).	Parallel Plate 25mm
	shear, pH 6)	pH 6)	pH switch by adding HCl to	in diameter,
			pH 10.5 stock solution .	gap=100 mm
	~800 Pa (High	Not obtained (high	Incubation at 37 °C for	Malvern UK
	shear, pH 6)	shear)	gelation	
		,		
2n	~7500 Pa (pH 7.4)	G'/G''=7-12 (pH	FmocFF (4 mg/mL)	AR-1000 (TA,UK)
	Gels are not stable	7.4)	Gels formed from diluting	Cone-plate
	at 37°		100 mg/mL FmocFF/DMSO	40mm in diameter,
			solution by H_2O .	52 um gap and 2°
			-	cone

Table S1. Rheological data for FmocFF gels available from the literature. Reference refers to the reference number in the paper.

Figure S1. Viscosity data for FmocFF at pH 11.7 and a concentration of 5 mg/mL.

Figure S2. Final pH 24 hours after adding different quantities of GdL to a solution of FmocFF (0.5 wt%) at pH 11.

Figure S3. Change in pH with time on adding 8.2 mg GdL to a solution of FmocFF (0.5 wt%) at an initial pH of 10. Insert shows changes over the first hour.

Figure S4. Titrations of FmocFF (0.5 wt%) solutions starting from a pH of approximately 11.7 using HCl. In-house synthesized (red data) and commercial FmocFF were titrated (black data). From this, an apparent pKa of 8.9 was extracted.

Figure S5. Tan δ for FmocFF gels prepared by the pH method using GdL. Gels were not formed above a pH of 8.

Figure S6. Tan δ for FmocFF gels prepared by the pH method using HCl (data for vortexed samples in red and without vortexing in black). Gels were not formed above a pH of 8.

Figure S7. Strain sweeps for FmocFF gels (0.5 wt%) prepared using (a) GdL (red, pH 6.1 and black, pH 4.1) or (b) HCl (red, pH 6.0 and black, pH 4.2) or (c) HCl with vortex mixing(red, pH 6.0 and black, pH 4.2).

Figure S8. Tan δ for FmocFF gels prepared by the solvent switch method.

Figure S9. G' as a function of ϕ_{DMSO} for FmocAG. FmocAG is more hydrophilic than FmocFF or FmocLG and gels are only formed at a ϕ_{DMSO} of 0.20 or below. FmocAG was prepared as described previously.¹

Discussion regarding the pH of solvent-switch systems.

There are three possible explanations as to why the pH of the systems are around 4. First, the presence of DMSO may affect the pH reading. However, pH measurements in DMSO/water combinations in the absence of FmocFF are as expected (data not shown).

Second, there could be acidic impurities in the peptide. However, when preparing a solution at high pH, we do not need to add excess sodium hydroxide above that expected from the molar concentration of the peptide, implying that this is not the case. During the titration, 25mg FmocFFOH (0.0468mmol) was used and dissolved in 5mL H₂O, followed by adding 0.6 mL NaOH (0.1M), which is 0.06 mmol NaOH, to the solution to result in a clear solution. Equal moles of NaOH will be used to deprotonate the FmocFFOH to FmocFFO⁻. The excess

of NaOH will contribute to the final pH of the solution, (excess is 0.0132 mmol NaOH in 5.6 mL total solution). The final pH should therefore be 11.4 by calculation. This is close to the experimental value of 11.7, within reasonable experimental errors. Hence, there is no acidic impurities in the FmocFF that are contributing to the fact that the solvent switch systems are at pH 4.

Hence, we interpret the lower than anticipated pH to the fact the FmocFF is a weak acid. Despite the lack of acidic imprities, the final pH of gels formed by a solvent switch method at a constant ϕ_{DMSO} of 0.05 is affected by the concentration of FmocFF used, Fig. S10.

Figure S10. Final pH of gels formed at ϕ_{DMSO} of 0.05 depends on the concentration of FmocFF. The line is a guide to the eye.

References

1. D.J. Adams, L.M. Mullen, M. Berta L. Chen and W.J. Frith, *Soft Matter*, **2010**, *6*, 1971-1980.