Ultra-thin Spin Coated Crosslinkable Hydrogels for use in Cell Sheet Recovery - Synthesis, Characterization to Application

Maria E. Nash,^{*a,b* *} William M. Carroll,^{*a*} Padraic J. Foley,^{*d*} Garrett Maguire,^{*b*} Claire O' Connell,^{*c*} Alexander Gorelov,^{*d*} Sergey Beloshapkin ^{*e*} and Yury Rochev ^{*b*}

^a School of Chemistry, National University of Ireland, Galway, Ireland.

^b National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.

^c National Centre for Laser Applications, National University of Ireland, Galway, Ireland.

^d School of Chemistry and Chemical Biology, University College Dublin, Ireland.

^e Materials and Surface Science Institute, University of Limerick, Ireland.

* Corresponding Author Contact Details: nash.maria @gmail.com

Fig.S1 XPS spectra of A) \approx 188 nm thick film. B) \approx 13 nm thick spin coated film. C) TCP substrate. C 1s spectra were scaled down by factor of 5 to fit with other intensities. The solid line represents the actual spectra obtained and the dotted lines represent the deconvolution of the broader peaks into individual components.

Figure 4 shows the XPS spectra of oxygen, nitrogen, carbon regions obtained from; A) NIPAm-*co*-AcBzPh films of approximately 188nm m in thickness, B NIPAm-*co*-AcBzPh film of an approximate thickness of 13nm and C) a TCP bare substrate. XPS spectra of the thicker spin coated samples of NIPAm-*co*-AcBzPh correspond to XPS pNIPAm spectra obtained by other authors.⁹ The contribution of AcBzPh in XPS spectra is negligible *i.e.* undetectable, because of the relative low concentration of the AcBzPh fraction, similar to FTIR analysis.

Fig. S.2 The proposed crosslinking mechanisim involves a CH insertion as above.