

Figure S1: ¹H NMR spectra of Dextran Methacrylate (DS = 10%).

Figure S2: ¹H NMR spectra of Dextran Methacrylate (DS = 20%).

Figure S3: ¹H NMR spectra of Dextran Methacrylate (DS = 25%).

Figure S4: ¹H NMR spectra of Dextran Methacrylate (DS = 50%).

 $DS (\%) = \frac{I_{viny!}}{I_{anomeric}} \times 100$

where, I_{vinyl} is the integration of the proton peak assigned to acrylate vinyl proton ($\delta = 6.24$ ppm) and $I_{anomeric}$ is the integration of –CH ($\delta = 5.00$ ppm) anomeric proton peak of the dextran repeating unit.

Figure S5: CLSM image and size distribution of DexM20 (DS 18%).

Figure S6: CLSM image and size distribution of DexM25 (DS 25%).

Figure S7: CLSM image and size distribution of DexM50 (DS 48%).

Figure S8: Q-dependence of the line broadening Γ_b of the Lorentzian, L_b , describing the diffusion of "slow" water molecules in the dextran based microgels DexM20 from 293 to 323 K.

Figure S9: Q-dependence of the line broadening Γ_b of the Lorentzian, L_b , describing the diffusion of "slow" water molecules in the dextran based microgels DexM25 from 293 to 323 K.

Figure S10: Q-dependence of the line broadening Γ_b of the Lorentzian, L_b , describing the diffusion of "slow" water molecules in the dextran based microgels DexM50 from 293 to 323 K.

Figure S11: Microgel enzymatic degradation monitored by dynamic light scattering of DexM10 (○), DexM20 (□), DexM25 (●) and DexM50 (■).