SUPPORTING INFORMATION

Reverse thermal gelation of aromatic solvents by a series of easily accessible organic salt based gelators

Pathik Sahoo,^a Indrajit Chakraborty,^b Parthasarathi Dastidar^a*

^aDepartment of Organic Chemistry, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S C Mullick Road, Jadavpur, Kolkata – 700032, West Bengal, India ^b Present address: School of Applied Sciences, KIIT University, Bhubaneswar-751024, Orissa, India

Materials and Methods: All the chemicals (Aldrich) and solvents are (A.R. grade, S.D. Fine Chemicals, India) commercially available and used without any further purification except azobenzene-4,4'-dicarboxyllic acid. It was prepared following a European patent²¹ by locally available chemicals (Loba Chemie Pvt. Ltd.). Petrol used in the gelation experiments have been purchased from the local market. Microanalyses are performed on a Perkin Elmer elemental analyzer 2400, Series II. FT-IR spectra are recorded using Perkin-Elmer Spectrum GX. Powder X-ray patterns are recorded on XPERT Philips (CuK α radiation, $\lambda = 1.5418$ Å) Diffractometer. Scanning Electron Microscopy (FT-SEM) is performed on a JEOL; JSM-6700F. Single Crystal X-ray diffraction data are recorded on a BRUKER AXS, SMART APEX II, Structure Was solved through APEX2 software.

Preparation of Salts: Salts were prepared by mixing azobenzene-4,4'-dicarboxyllic acid with the corresponding longchain amines according to Scheme 2 in both 1:2 and 1:1 molar ratio acid:amine in MeOH in a R.B.. The resultant mixture was subjected to sonication for a few minutes and followed by strong heating to ensure the homogeneous mixing of the two components. Finally by evaporation of solvent in a rotavapour, the

orange compounds were obtained and subjected to various physicochemical analyses and

a gelation test.

Physico-chemical data for the salts

- 1. **2.16 Hexadecylammoniumazobenzene-4,4'-dicarboxylate:** m.p. 166°C. Anal. Calc. for $C_{46}H_{80}N_4O_4$: C, 73.36; H, 10.71; N, 7.44. Found: C, 72.84; H, 10.11; N, 7.59. FT-IR (KBr): 2953, 2914, 2848, 1589, 1520, 1469, 1381, 1305, 1217, 1159, 1099, 1006, 974, 875, 796, 704, 495cm⁻¹. ¹H NMR(CD₃OD) (300MHz) $\delta = 8.09$ (4H, d, J = 8.05Hz), 7.89 (4H, d, J = 8.5Hz), 2.88 (4H, t, J = 7.5 Hz, ⁺NH₃CH₂CH₂(CH₂)₁₃CH₃), 1.62-1.60 (4H, m, ⁺NH₃CH₂CH₂(CH₂)₁₃CH₃), 1.36-1.25 (52H, m, ⁺NH₃CH₂CH₂(CH₂)₁₃CH₃), 1.87 (6H, t, J = 6.75Hz, ⁺NH₃CH₂CH₂(CH₂)₁₃CH₃).
- 2. 2.15 Pentadecylammoniumazobenzene-4,4'-dicarboxylate: m.p. 162° C. Anal. Calc. for C₄₄H₇₆N₄O₄: C, 72.88; H, 10.56; N, 7.73. Found: C, 73.03; H, 10.54; N, 7.73. FT-IR (KBr): 2920, 2850, 2189, 1587, 1525, 1467, 1373, 1303, 1217, 1095, 1006, 875, 796, 719, 705, 623, 495cm⁻¹. ¹H NMR(CD₃OD) (500MHz) $\delta = 8.13-8.11$ (4H, m), 7.93-7.91(4H, m), 2.91 (4H, t, J = 7.75 Hz, ⁺NH₃CH₂CH₂(CH₂)₁₂CH₃), 1.65-1.63 (4H, m, ⁺NH₃CH₂CH₂(CH₂)₁₂CH₃), 1.36-1.28 (48H, m, ⁺NH₃CH₂CH₂(CH₂)₁₂CH₃), 0.92-0.89 (6H, m, ⁺NH₃CH₂CH₂(CH₂)₁₂CH₃).
- **3. 2.14 Tetradecylammoniumazobenzene-4,4'-dicarboxylate:** m.p. 159-162°C. Anal. Calc. for $C_{42}H_{72}N_4O_4$: C, 72.37; H, 10.41; N, 8.04. Found: C, 72.49; H, 10.49; N, 8.28. FT-IR (KBr): 2918, 2850, 2187, 1631, 1587, 1519, 1467, 1371, 1304, 1217, 1096, 1007, 876, 798, 721, 499 cm⁻¹. ¹H NMR(CD₃OD) (500MHz) $\delta = 8.11$ -8.08 (4H, m), 7.91-7.88 (4H, m), 2.89 (4H, t, J = 7.75 Hz, ⁺NH₃CH₂CH₂(CH₂)₁₁CH₃), 1.90-1.1.88(4H, m, ⁺NH₃CH₂CH₂(CH₂)₁₁CH₃), 0.88 (6H, t, J = 6.75Hz, ⁺NH₃CH₂CH₂(CH₂)₁₁CH₃).
- **4. 2.12 Dodecylammoniumazobenzene-4,4'-dicarboxylate:** m.p. 159-162°C. Anal. Calc. for $C_{38}H_{64}N_4O_4$: C, 71.21; H, 10.06; N, 8.74. Found: C, 71.19; H, 10.01; N, 8.47. FT-IR (KBr): 3416, 2956, 2916, 2850, 2771, 2665, 2540, 2187, 1952, 1664, 1627, 1610, 1583, 1539, 1467, 1359, 1305, 1213, 1101, 1004, 877, 854, 798, 721, 705, 621, 493, 451 cm⁻¹. ¹H NMR(CD₃OD) (500MHz) $\delta = 8.10$ (4H, d, J = 8.50), 7.99 (4H, d, J = 8.50), 2.89 (4H, t, J = 7.75 Hz, ⁺NH₃CH₂CH₂(CH₂)₉CH₃), 1.65-1.61 (4H, m, ⁺NH₃CH₂CH₂(CH₂)₉CH₃), 1.35-1.32 (36H, m, ⁺NH₃CH₂CH₂(CH₂)₉CH₃), 0.88 (6H, t, J = 7.00Hz, ⁺NH₃CH₂CH₂(CH₂)₉CH₃).
- **5. 2.11 Undecylammoniumazobenzene-4,4'-dicarboxylate:** m.p. 161-163°C. Anal. Calc. for $C_{36}H_{60}N_4O_4$: C, 70.55; H, 9.87; N, 9.14. Found: C, 70.32; H, 9.86; N, 9.16. FT-IR (KBr): 2956, 2918, 2851, 2185, 1661, 1626, 1589, 1541, 1466, 1362, 1306, 1213, 1101, 1005, 877, 798, 706, 494 cm⁻¹. ¹H NMR(CD₃OD) (500MHz) $\delta = 8.10$ (4H, d, J = 8.50Hz), 2.90(4H, t, J = 7.75 Hz, ⁺NH₃CH₂CH₂(CH₂)₈CH₃), 1.65-1.60 (4H, m, ⁺NH₃CH₂CH₂(CH₂)₈CH₃), 1.36-1.26 (32H, m, ⁺NH₃CH₂CH₂(CH₂)₈CH₃), 0.88 (6H, t, J = 7.00Hz, ⁺NH₃CH₂CH₂(CH₂)₈CH₃).
- 6. **2.10 Decylammoniumazobenzene-4,4'-dicarboxylate:** m.p. 162-164°C. Anal. Calc. for $C_{34}H_{56}N_4O_4$: C, 69.83; H, 9.65; N, 9.58. Found: C, 69.84; H, 9.72; N, 9.59. FT-IR (KBr): 2956, 2916, 2850, 2661, 2185, 1953, 1664, 1627, 1583, 1541, 1359, 1305, 1215, 1180, 1101, 1058, 1004, 877, 854, 798, 705, 493, 434 cm⁻¹. ¹H NMR(CD₃OD) (500MHz) δ = 8.11 (4H, d, J = 8.00Hz), 7.91 (4H, d, J = 8.50Hz), 2.89 (4H, t, J = 7.75Hz,

⁺NH₃CH₂CH₂(CH₂)₇CH₃), 1.65-1.62 (4H, m, ⁺NH₃CH₂CH₂(CH₂)₇CH₃), 1.37-1.28 (28H, m, ⁺NH₃CH₂CH₂(CH₂)₇CH₃), 0.88 (6H, t, J = 6.75Hz, ⁺NH₃CH₂CH₂(CH₂)₇CH₃).

- **1.16 Hexadecylammoniumhydrogen azobenzene-4,4'-dicarboxylate:** mp 195°C Anal. Calc. for C₃₀H₄₅N₃O₄: C, 70.42; H, 8.86; N, 8.21. Found: C, 70.68; H, 9.10; N, 8.07. FT-IR (KBr): 2914, 2849, 2669, 2550, 1687, 1680, 1602, 1589, 1547, 1529, 1470, 1381, 1292, 1217, 872, 796, 781, 702 cm⁻¹.
- 8. 1.15 Pentadecylammoniumhydrogen azobenzene-4,4'-dicarboxylate: mp 187-189°C Anal. Calc. for C₂₉H₄₃N₃O₄: C, 69.99; H, 8.71; N, 8.44. Found: C, 69.60; H, 8.69; N, 8.52. FT-IR (KBr): 2918, 2851, 2669, 2552, 1687, 1601, 1526, 1468, 1375, 1298, 1215, 1126, 1097, 1005, 867, 769, 700, 619, 538, 490 cm⁻¹.
- **9. 1.14 Tetradecylammoniumhydrogen azobenzene-4,4'-dicarboxylate:** m.p. 179-180°C. Anal. Calc. for $C_{28}H_{41}N_3O_4$: C, 69.53; H, 8.54; N, 8.69. Found: C, 69.71; H, 8.74; N, 8.64. FT-IR (KBr): 2953, 2918, 2851, 2667, 2552, 1687, 1602, 1529, 1468, 1377, 1294, 1215, 1126, 1097, 1005, 867, 769, 700, 538, 491 cm⁻¹.
- **10. 1.12 Dodecylammoniumhydrogen azobenzene-4,4'-dicarboxylate:** m.p. $161-165^{\circ}C$ Anal. Calc. for C₂₆H₃₇N₃O₄: C, 68.54; H, 8.19; N, 9.22. Found: C, 68.43; H, 8.57; N, 9.14. FT-IR (KBr): 2957, 2918, 2851, 2666, 2550, 2185, 1948, 1686, 1626, 1603, 1585, 1539, 1468, 1427, 1362, 1302, 1213, 1126, 1101, 1007, 933, 872, 798, 779, 700, 619, 538, 494 cm⁻¹.
- **11. 1.11 Undecylammoniumhydrogen azobenzene-4,4'-dicarboxylate:** mp 194-198°C Anal. Calc. for C₂₅H₃₅N₃O₄: C, 68.00; H, 7.99; N, 9.52. Found: C, 67.46; H, 8.17; N, 9.24. FT-IR (KBr): 2957, 2918, 2851, 2664, 2550, 2183, 1688, 1630, 1603, 1583, 1537, 1468, 1427, 1360, 1296, 1215, 1126, 1101, 1005, 872, 781, 698, 640, 621, 557, 538, 494 cm⁻¹.
- 12. **1.10 Decylammoniumhydrogen azobenzene-4,4'-dicarboxylate:** mp 202°C Anal. Calc. for $C_{24}H_{33}N_3O_4$: C, 67.42; H, 7.78; N, 9.83. Found: C, 67.13; H, 7.81; N, 9.85. FT-IR (KBr): 2955, 2918, 2850, 2664, 2550, 2183, 1948, 1687, 1628, 1603, 1583, 1537, 1468, 1427, 1360, 1296, 1215, 1126, 1101, 1005, 872, 798, 781, 696, 538, 492 cm⁻¹.

Salts	DMSO	DMF	Methyl Salicylate	Ph- NO2	Ph-Cl	1,2- dichloro benzene	Ph-me	o-Xylene	m-xylene	p-xylene	Petrol	МеОН	H ₂ O	Ethylene glycol
2.16	2.77(101)	S	С	С	2.22	4.0	4.0	2.85	2.85	2.85	INS	INS	INS	1.33(94)
2.15	WG	FP	С	С	2.5	WG	2.85	2.85	2.85	2.85	INS	INS	INS	1.48(78)
2.14	6(111)	6(52)	С	WG	2.0	4.0	WG	WG	6.0	WG	INS	Р	INS	3(114)
2.12	2.7(NM)	С	Р	Р	WG	С	WG	Р	WG	WG	WG	Р	Р	Р
2.11	WG	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	S
2.10	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	S
1.16	2.8(NM)	S	С	С	С	С	С	С	С	С	С	С	С	2.8(NM)
1.15	S	S	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	4
1.14	S	S	INS	INS	INS	4	INS	INS	INS	INS	INS	INS	INS	INS
1.12	S	S	INS	INS	INS	4	INS	INS	INS	INS	INS	INS	INS	INS
1.11	S	S	INS	INS	4(NM)	4	INS	INS	INS	INS	INS	INS	INS	INS
1.10	S	S	INS	INS	INS	4	INS	INS	INS	INS	INS	INS	INS	INS

Table S1: Gelation data

^aNumerical values indicate minimum gelator concentration in wt% (w/v); numerical values within parenthesis are the gel-to-sol dissociation temperature (T_{gel}) in °C (note that T_{gel} for aromatic gels could not be determined as they were reverse-thermal gels; S = solution; C = colloid; WG = weak gel; FP = fibrious precipitate, P = precipitate, INS = insoluble, NM = not measured. T_{gel} was measured by dropping ball method; the details are given below:

In a typical experiment, a glass ball (0.242 g) was placed carefully on the surface of a gel (500 μ l) taken in a test tube (11.0 mm diameter). The test tube was then immersed in an oil bath which was heated gradually. The temperature noted when the glass touched the bottom of the test tube was the T_{gel}.

Single crystal X-ray data.

Data were collected using MoK α ($\lambda = 0.7107$ Å) radiation on a BRUKER APEX II diffractometer equipped with CCD area detector. Data collection, data reduction, structure solution/refinement were carried out using the software package of SMART APEX. All structures were solved by direct method and refined in a routine manner. In most of the cases, nonhydrogen atoms were treated anisotropically. All the hydrogen atoms were geometrically fixed. CCDC (CCDC No. 819160-819161) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk/.

Crystal parameters	1.16	1.15		
CCDC No	819161	819160		
Empirical formula	$C_{30} H_{45} N_3 O_4$	$C_{29} \ H_{43} \ N_3 \ O_4$		
Formula weight	508.67	497.66		
Crystal size/mm	0.41 X 0.18 X 0.10	0.42X 0.30 X 0.14		
Crystal system	Triclinicc	Triclinicc		
Space group	P-1	P-1		
a /Å	6.323(3)	6.4221(11)		
b/Å	14.956(7)	14.631(3)		
c /Å	16.823(8)	15.001(3)		
αu^0	113.730(6)	95.239(6)		
β^{0}	95.041(7)	94.880(7)		
$\gamma/^0$	94.696(7)	99.656(7)		
Volume/Å ³	1438.8(12)	1376.5(5)		
Z	2	2		
F(000)	550	540		
$\mu MoK\alpha /mm^{-1}$	0.078	0.080		
Temperature/K	296(2)	296(2)		
R _{int}	0.0586	0.1166		
Range of h, k, l	-5/ 5, -13/13, -15/15	-6/6, -13/14, -14/14		
θmin/max/°	1.33/19.37	1.37/20.76		
Reflections collected/unique/ observed	7895 /2443/1528	10569 / 2854/ 1429		
Data/restraints/ parameters	2443/ 0/ 316	2854 /0/347		
Goodness of fit on F ²	1.220	0.961		
Final R indices [I>2 σ (I)]	$\begin{array}{l} R_{1}=0.1015\\ wR_{2}=0.2955 \end{array}$	$R_1 = 0.0636$ $wR_2 = 0.1390$		
R indices (all data)	$R_1 = 0.1396$ $wR_2 = 0.3346$	$R_1 = 0.1430$ $wR_2 = 0.1773$		

Table S2: Crystal data

Molecular Plots and Hydrogen Bonding Parameters for the compounds

Compound: 1.16

Table S3: Hydrogen bonding parameters of 1.16

1.16							
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A			
N21— $H21A$ ···O20B ¹	0.89	1.92	2.786 (10)	164			
N21—H21 A ···O20 A^{i}	0.89	1.92	2.790 (11)	164			
N21—H21B…O19 ⁱⁱ	0.89	2.26	2.982 (7)	138			
N21—H21C···O19 ⁱⁱⁱ	0.89	1.94	2.817 (7)	170			
Symmetry codes: (i) $-x+2$, $-y+1$, $-z+1$; (ii) $x+1$, y , $z-1$; (iii) $-x+1$, $-y+1$, $-z+1$.							

Compound: 1.15

Table S4: Hydrogen bonding parameters of 1.15

1.15							
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A			
O21— $H21$ ···O1 ⁱ	0.96 (7)	1.65 (7)	2.602 (5)	1.77 (6)			
N22—H22 A ···O2 ⁱⁱ	0.91	1.91	2.801 (5)	165			
N22—H22 C ···O1 ⁱⁱⁱ	0.91	1.92	2.799 (6)	162			
N22—H22 B ····O2 ^{iv}	0.91	2.22	2.959 (5)	138			
Symmetry codes: (i) $x+1$, y , $z+1$; (ii) $-x+1$, $-y+1$, $-z+1$; (iii) $-x+2$, $-y+1$, $-z+1$; (iv) $x+1$,							
y-1, z+1.							