Supporting Information of Manuscript Entitled with

Pathway-Dependent Re-assembly of Dual-Responsive ABC Terpolymer in Water

Chunhui Luo, Yu Liu, and Zhibo Li*.

Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Email: zbli@iccas.ac.cn

Table S1 Summary of copolymer molecular weights and compositions.

Sample	[M] ₀ /[macro-CTA] ₀	^a Conv. (%)	DP	PDI	<i>M</i> _n (GPC)/kDa	<i>M</i> _n (NMR)/kDa
EB	30	93	28	1.09	5.6	6.2
EBD	35	92	32	1.14	12.6	11.2

a) Calculated by ¹H NMR in CDCl₃.

Figure S1. DLS results (left) and TEM images (right) of aggregates formed from 0.1 wt% PEG_{45} -*b*- $PnBMA_{28}$ diblock aqueous solution at RT and pH=7 with an angle of 90°.

Figure S2. CryoTEM images of aggregates formed from 0.1 wt% EBD terpolymer aqueous solution: (**a**) pH=4, (**b**) pH=6, (**c**) pH=10, and (**d**) pH=12 in RT.

Figure S3. Angular dependent DLS (solid) and SLS (open) measurements performed on EDB aqueous solution (0.1-wt %) at (**a**) pH=8 and (**b**) pH=10 at RT.

Figure S4. Apparent size distributions of aggregates formed from 0.1-wt% EBD terpolymer aqueous solution upon pH variations in RT at an angle of 90°.

Figure S5. TEM images of aggregates formed from 0.1-wt% EBD trerpolymer aqueous solution after adjusting solution from (a) pH = 8 to pH=2, and (b) from pH=10 to pH 2 at RT.

Figure S6. Transmittance of 0.1-wt% EBD terpolymer aqueous solution at (a) pH=8 and (b) pH=10 in a heating/cooling cycle with a heating rate of 1 °C /min.

Figure S7. TEM image of of EBD terpolymer aggregates with pH 8 after heating at 55 °C for (a) 0 hour, (b) 1 hour and EBD terpolymer aggregates with pH 10 after heating at 35 °C for (c) 0 hour, (d) 1 hour (stained with uranyl acetate).

Figure S8. Angular dependent DLS (solid) and SLS (open) measurements performed on EDB solution (0.1 wt %) in RT after heating at (**a**) 55 °C with pH=8 and (**b**) 35 °C with pH=10.

Figure S9. CryoTEM images of toroids and vesicles after 2 months' storage in RT.

Figure S10. TEM images of assemblies formed EBD solutions after first round of thermal annealing: (a) the solution pH was changed from 2 to 8 followed by annealing at 55 $^{\circ}$ for one hour, EBD micelle repeated the morphology transition from sphere to cylinder and then to toroid. (b) the solution pH was changed from 2 to 10 followed by annealing at 35 $^{\circ}$ for one hour, EBD micelle repeated the morphology transition from sphere to cylinder and then to toroid. (b) the solution pH was changed from 2 to 10 followed by annealing at 35 $^{\circ}$ for one hour, EBD micelle repeated the morphology transition from sphere to cylinder and then to vesicles. (stained with uranyl acetate).

Figure S11. ¹H-NMR spectra of 0.1 wt% EBD terpolymer in (a) $CDCl_3$, D_2O with pD 2, pD 8 in RT, pD 8 after heating at 55 °C, (b) pD 10 in RT and after heating at 35 °C.

Figure S12. GPC traces of EBD after a transition cycle.

Figure S13.GPC traces of mPEG-CTA (M_n =3500, PDI=1.05), EB diblock (M_n =13800, PDI=1.08), and EBD triblock (M_n =35400, PDI=1.13) copolymers in THF.

(GPC was performed by a set of a Waters 515 HPLC pump and a Waters 2414 refractive index detector. THF was used as an eluent at a flow rate of 1.0 mL/min at 35 °C. Polystyrene standards were used for the calibration.)