Electronic Supplementary Information

for

Self-Assembly of a Triple-Zwitterion in Polar Solutions: hierarchical Formation of Nanostructures

Thomas H. Rehm,^{a,b} Franziska Gröhn,^{c,d} and Carsten Schmuck^{*,a}

^a Institut für Organische Chemie, Universität Duisburg-Essen, 45141 Essen, Germany.

^b New address: Institut für Mikrotechnik Mainz GmbH, 55129 Mainz, Germany.

^c Department für Chemie und Pharmazie and Interdisciplinary Center for Molecular Materials,

Universität Erlangen-Nürnberg, 91058 Erlangen, Germany.

^d Max-Planck-Institut für Polymerforschung, 55128 Mainz, Germany.

1.	¹ H NMR dilution studies	S2
2.	¹ H DOSY NMR studies	S3
3.	Molecular modelling	S5
4.	¹ H NMR spectra of the compounds 4, 5 and 7, and 1 as chloride salt or zwitterionic (10 mM) in DMSO- d_6 .	S8

1. ¹H NMR dilution studies

Figure S1. Inversion of the ¹H NMR signal integral by changing binding mode from *intra*- to *inter*molecular with increasing concentration: pyrrole NH_{intra} : pyrrole $NH_{inter} \approx 1.2 : 1.9 (1 \text{ mM})$ and 2 : 0.9 (40 mM).

Figure S2. ¹H NMR dilution row for triple-zwitterion 1 in a concentrations range from 1 to 40 mM in DMSO- d_6 (from bottom to top).

2. ¹H DOSY NMR studies

	1 (2 mM)	1 (20 mM)	7 (2 mM)
PULPROG	dstebpgp3s	dstebpgp3s	dstebpgp3s
TD[F2]	64K	64K	64K
TD[F1]	32	32	32
NS	384	128	512
DS	64	64	64
D20	50 ms	50 ms	100 ms
D21	5 ms	5 ms	5 ms
P30	5.4 ms	5.4 ms	5.4 ms
P19	1.1 ms	1.1 ms	1.1 ms
GPZ6	100 %	100 %	100 %
GPZ7	-13.17	-13.17	-13.17
GPZ8	-17.13	-17.13	-17.13

Table S1. Acquisition parameters for the DOSY experiments

Table S2. 1 (2 mM, *T* = 303.4 K)

δ [ppm]	$D \cdot 10^{-11} [\text{m}^2/\text{s}]$	$\log D$	
14.673	8.905	-10.050	
12.628	9.131	-10.039	
12.371	9.042	-10.044	
11.069	7.150	-10.146	
3.758	7.937	-10.100	
3.326	$8.068 \cdot 10^{-10}$	-9.093	water
2.868	7.643	-10.117	
2.503	$6.196 \cdot 10^{-10}$	-9.208	DMSO
2.188	7.847	-10.105	
2.096	7.725	-10.112	
0.000	$6.029 \cdot 10^{-10}$	-9.220	TMS

Table S3. **1** (20 mM, *T* = 303.4 K)

δ [ppm]	$D \cdot 10^{-11} [\text{m}^2/\text{s}]$	$\log D$	
14.627	8.688	-10.061	
12.625	6.185	-10.209	
12.383	8.470	-10.072	
11.069	7.150	-10.146	
7.998	6.817	-10.166	
3.760	6.650	-10.177	
3.339	$7.820 \cdot 10^{-10}$	-9.107	water
2.870	6.320	-10.199	
2.504	$6.083 \cdot 10^{-10}$	-9.216	DMSO
2.179	6.050	-10.218	
0.000	5.735 · 10 ⁻¹⁰	-9.241	TMS

δ [ppm]	$D \cdot 10^{-11} [\text{m}^2/\text{s}]$	$\log D$	
7.691	1.154	-9.953	
4.246	1.096	-9.960	
3.326	8.417	-9.075	water
3.057	1.098	-9.959	
2.924	1.082	-9.966	
2.505	6.535	-9.185	DMSO
2.432	1.112	-9.954	
2.262	1.089	-9.963	
2.160	1.093	-9.961	
1.469	1.091	-9.962	
1.290	1.105	-9.957	
0.003	6.213	-9.207	TMS

Table S4. 7 (2 mM, *T* = 303.4 K)

Table S5. Mean diffusion coefficients and corresponding hydrodynamic radii

	$\emptyset D [m^2/s]$	$r_H \cdot 10^{-9} [m]$
1 (2 mM)	8.15 · 10 ⁻¹¹	1.37
1 (20 mM)	6.98 · 10 ⁻¹¹	1.60
7 (2 mM)	$1.59 \cdot 10^{-10}$	0.70

3. Molecular Modelling

Figure S3. Calculated structure of dimeric 1. The *intermolecular* binding motive is shown in green. Both *intramolecular* binding motives are shown in yellow. Non-polar hydrogen atoms are omitted for clarity.

Figure S4. End-capped tetramer as repeating element for the self-assembly of 1 (one capped dimer is highlighted in yellow; non-polar hydrogen atoms are omitted for clarity).

Table S6. Distances between the central nitrogen atoms of the *tren*-linker (A-A) and the maximum distance of the exterior binding motifs (B-B) as derived from the molecular mechanics calculations [Å].

A-A	B-B
23,5	34,6
22,6	33,5
24,2	33,2
22,1	20,6
19,9	32,4
24,9	29,8

Electronic Supplementary Material (ESI) for Soft Matter This journal is C The Royal Society of Chemistry 2012

24.5	20.5
24,5	23,3
20,3	27,1
24,7	26,5
22,3	20,8
24,5	29,7
20,3	27,3
22,5	33,4
23,9	33,9
25	34,6
23,2	30,5
25,4	36,4
23,7	37,2
22,8	30
24,3	35,4
18,2	27,8
24,4	26
22,2	34,8
23,2	32,9
19,1	27,1
23,4	34,4
22	34,4
24,1	22,1
22,3	31,9
20,9	30
21,7	24,3
24,5	33,4
22,7	35,7
20,9	23,9
22,8	32,8
21,1	30,1
19,4	25,5
22,9	21,7
23,5	37,5
23,6	27,8
23,3	33,8
16,5	34,7
21	27,6
24,1	32,7
23,6	36,7
23	24,7
33,4	33,5
17,6	30,3
20.5	28,9
20,3	<i>.</i>
20,5	28,9
20,5 22,6 23,5	28,9 34,9

Electronic Supplementary Material (ESI) for Soft Matter This journal is C The Royal Society of Chemistry 2012

22,2	34,6
19,9	30,4
23,3	31,1
23,4	32,8
19,6	28,6
22,8	24,4
23,3	33,2
24,1	31,9
Ø 22,7	Ø 30,6

