Cite this: DOI:

www.rsc.org/xxxxxx

PAPER

Electronic Supplementary Material AFM protein-protein interactions within the EcoR124I molecular motor

50

Aneta E. Sikora,^a James R. Smith,^{*b} Sheelagh A. Campbell^b and Keith Firman^a

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI:

Bell-Evans Model Parameters

The dissociation rate under the applied external force $k_{diss}(f)$ can be described by Eq. S-1:

$$k_{diss}(f) = k_{diss}(0) \exp\left[\frac{f x_{diss}}{k_B T}\right]$$
(S-1)

where $k_{diss}(0)$ is the natural dissociation and association rate, *f* is the applied force, x_{diss} is the distance of the energy barrier to rupture, k_BT is thermal energy (4.1 pN nm).

¹⁵ $k_{diss}(0)$ of the bond is characteristic for any particular pair of molecules and varies between 10⁻⁶ and 10¹ s⁻¹.^{1,2} $\pi(0)$, in the absence of an external force, for ligand-receptor complexes varies between 10⁻⁴ s and a few min and can be measured using Eq. S-2:

$$_{20} \tau(0) = \frac{1}{k_{diss}(0)}$$
 (S-2)

The measured forces necessary to rupture the bond between molecules in the complex increase over time during a pulling experiment with increasing loading rate $R_{f_s}^3$ defined as the ²⁵ product of the effective spring constant k_s (stiffness) of the system (the elasticity of both cantilever k_c and bound molecules k_b)⁴ and the velocity υ in which the force is applied (in practice, the retraction speed of the AFM tip) (Eq. S-3):

$$R_f = k_s \upsilon \tag{S-3}$$

The rupture force f^* is related to R_f (Eq. S-4):

$$f^* = \frac{k_B T}{x_{diss}} \ln\left(\frac{x_{diss}}{k_{diss}(0).k_B T}\right) + \frac{k_B T}{x_{diss}} \ln R_f$$
(S-4)

35

^a School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth POI 2DY, UK.

^b School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1

40 2DT, UK. E-mail: james.smith@port.ac.uk; Fax: +44 (0)23 9284 3565; Tel: +44 (0)23 9284 2556 ⁴⁵ A plot of f^* vs. $\ln(R_f)$ enables x_{diss} and $k_{diss}(0)$ to be calculated from the gradient and intercept, respectively (Eqs. S-5–S-8):⁵

$$a = \frac{k_B T}{x_{diss}} \ln\left(\frac{x_{diss}}{k_{diss}(0).k_B T}\right)$$
(S-5)

$$b = \frac{k_B T}{x_{diss}} \tag{S-6}$$

$$k_{diss}(0) = \frac{1}{b}e^{-\frac{a}{b}}$$
(S-7)

$$_{55} x_{diss} = \frac{k_B T}{b}$$
(S-8)

According to the theoretical predictions,⁵ *f* rises linearly with the R_f on a half-logarithmic scale, which is characteristic for a single-energy barrier in the thermally activated regime.⁶ A change ⁶⁰ in slope is observed for each new energy barrier. For example, avidin-biotin and streptavidin-biotin complexes have shown multiple energy barriers in the dissociation pathway.⁶

The Bell-Evans model parameters $k_{diss}(0)$ and x_{diss} were determined from linear regression of a f^* vs. $\ln(R_f)$ plot, the ⁶⁵ intercept *a* (2.29) and slope *b* (3.04) (Fig. 8, main text) being obtained from Eqs. S-9 and S-10:

$$a = \frac{\sum y_i}{n} - b \frac{\sum x_i}{n} \tag{S-9}$$

$${}^{70} b = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$$
(S-10)

where x_i and $y_i = R_f$ and f^* , respectively, and *n*=number of measurements. The Δa and Δb values correspond to the standard errors in *a* and *b* obtained from the linear regression fit of f^* vs. $\ln(R) = \Delta a (2.47)$ and $\Delta b (0.27)$ were calculated using Eqs. S.11.

⁷⁵ ln(R_f). Δa (2.47) and Δb (0.37) were calculated using Eqs. S-11 and S-12:

$$\Delta a = \sqrt{\frac{1}{n} \Delta b^2 \sum x_i^2}$$
(S-11)

$$\Delta b = \sqrt{\frac{n[\sum y_i^2 - b \sum x_i y_i - a \sum y_i]}{(n-2)[n \sum x_i^2 - (\sum x_i)^2]}}$$
(S-12)

The standard error in Δx_{diss} (0.17 nm) was calculated using Eq. S-13:

$$\left(\frac{\Delta x_{diss}}{x_{diss}}\right)^2 = \left(\frac{\Delta b}{b}\right)^2 \tag{S-13}$$

References

5

- 1 X.H. Zhang, E. Wojcikiewicz, V.T. Moy, *Biophys. J.*, 2002, 15 **83**, 2270-2279.
- 2 F. Schwesinger, R. Ros, T. Strunz, D. Anselmetti, H.J. Guntherodt, A. Honegger, L. Jermutus, L. Tiefenauer, A. Pluckthun, *Proc. Natl. Acad. Sci. USA*, 2000, **97**, 9972-9977.
- ²⁰ P. Hinterdorfer, Y.F. Dufrene, *Nature Methods*, 2006, **3**, 347-²⁰ 355.
- 4 C.B. Yuan, A. Chen, P. Kolb, V.T. Moy, *Biochemistry*, 2000, **39**, 10219-10223.
- 5 E. Evans, K. Ritchie, *Biophys. J.*, 1997, 72, 1541-1555.
- 6 R. Merkel, P. Nassoy, A. Leung, K. Ritchie, E. Evans, *Nature*, 1999, **379**, 50-53.