Supporting Information

Acid-Responsive Organogel Mediated by Arene-Perfluoroarene and **Hydrogen Bonding Interactions**

Huixian Wu, Ben-Bo Ni, Chong Wang, Feng Zhai and Yuguo Ma*

Beijing National Laboratory for Molecular Sciences (BNLMS), Key Lab of Polymer Chemistry & Physics of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China

Email: ygma@pku.edu.cn

Page

Table of Contents		Page
1.	Corey-Pauling-Koltun (CPK) Modeling of Imine 1	S2
2.	¹ H NMR Dilution Study of Imine 1 in CDCl ₃	S 3
3.	¹ H NMR Dilution Study of 1:1 Mixture of 3 and 4 in CDCl ₃	S 3
4.	Photos of Gels in Different Organic Solvents	S4
5.	¹ H NMR Monitoring Hydrolysis of Imine 1 Catalyzed by p -MeC ₆ H ₄ SO ₃ H	S4
6.	Scanning Electron Microscopy (SEM) Image of 1:1 mixture of 3 and 4	S 5
7.	NMR Spectra of New Compounds	S 5

1. Corey-Pauling-Koltun (CPK) Modeling of Imine 1

Figure S1. Corey-Pauling-Koltun (CPK) modeling of imine **1**. Molecular length = 5.2 nm and molecular width = 3.6 nm when the six *n*-dodecyl chains on benzylamine unit were extended.

2. ¹H NMR Dilution Study of Imine 1 in CDCl₃.

Figure S2. Partial ¹H NMR spectra of imine 1 in CDCl₃ at (a) 2.0×10^{-3} M; (b) 3.2×10^{-3} M; (c) 5.9 $\times 10^{-3}$ M; (d) 1.4×10^{-2} M; (e) 2.7×10^{-2} M.

3. ¹H NMR Dilution Study of 1:1 mixture of 3 and 4 in CDCl₃.

Figure S3. Partial ¹H NMR spectra of 1: 1 3 and 4 in CDCl₃ at (a) 1.4×10^{-3} M; (b) 2.8×10^{-3} M; (c) 5.8×10^{-3} M; (d) 1.4×10^{-2} M; (e) 2.7×10^{-2} M.

4. Photos of Gels in Different Organic Solvents

Figure S4. Photos of gels formed by imine **1** in (a) ethyl acetate/*n*-hexane (1/3, v/v) (5 g/L), (b) ethyl acetate (10 g/L), (c) 1,4-dioxane (10 g/L), (d) 1,4-dioxane/*n*-dodecane (1/3, v/v) (1/3, v/v) (5 g/L), (e) *n*-hexane (2 g/L).

Figure S5. Hydrolysis of imine **1** in CDCl₃ (26.3×10^{-6} mol/mL) catalyzed by *p*-MeC₆H₄SO₃H (<0.1 mg) was monitored by ¹H NMR at (a) 0 min; (b) 14 min; (c) 22 min; (d) 28 min; (e) 35 min; (f) 46 min; (g) 50 min.

6. Scanning Electron Microscopy (SEM) Image of 1:1 mixture of 3 and 4

Figure S6. A 1:1 mixture of 3 and 4 in EA/*n*-hexane (1/3, v/v) solution with $[3] = [4] = 8 \times 10^{-3}$ mol/L was subjected to SEM test after the sample was dried. SEM image revealed that no fibrous aggregate was formed.

7. NMR Spectra of New Compounds

Figure S7. ¹H NMR spectrum of 2

Figure S8. ¹⁹F NMR spectrum of **2** (insert shows the enlarged ¹⁹F signals)

Figure S9. ¹³C NMR spectrum of **2** (insert shows signals generated from fluorinated carbons)

Figure S10. ¹H NMR spectrum of 3

Figure S11. ¹⁹F NMR spectrum of **3** (insert shows the enlarged ¹⁹F signals)

Figure S12. ¹³C NMR spectrum of 3 (insert shows signals generated from fluorinated carbons)

Figure S13. ¹H NMR spectrum of 4

Figure S14. ¹³C NMR spectrum of 4

Figure S15. ¹H NMR spectrum of imine 1

...

Figure S16. ¹⁹F NMR spectrum of imine **1** (insert shows the enlarged ¹⁹F signals)

Figure S17. ¹³C NMR spectrum of imine **1** (insert shows signals generated from fluorinated carbons)