Electronic Supplementary Information

Thixotropic and self-healing triggered reversible rheology switching in a peptide-based organogel with a cross-linked nano-ring pattern

Xudong Yu, Xinhua Cao, Liming Chen, Haichuang Lan, Bin Liu, Tao Yi*

Department of Chemistry, Fudan University, 220 Handan Road, Shanghai

200433 (China)

E-mail: yitao@fudan.edu.cn

Contents

1.	Synthesis detail	p. S2-S4
2.	Gelation properties	p. S5
3.	Morphological study	p. S6-S8
4.	Viscoelasticity study of the gels in toluene	p. S9-S11
5.	Uv-vis and CD spectra	p. S12-S14

1. Synthesis detail

Scheme S1 Synthesis of compound 1

The synthesis of N-ethyl amine-4-Br-1, 8- naphthalic anhydride (2) was according to the literature 1.

Synthesis of di-3-β-cholest-5-en-3-yl-ester-N-Lysine acid ethyl ester (3): Cholesteryl choroformate (2 g, 45 mmol), H-Lys-OMe·2HCl (464 mg, 20 mmol) and 2 mL Et₃N were stirred in dry CH₂Cl₂ (150 mL) for 24 hours, the mixture was concentrated and purified by column chromatography (CH₂Cl₂/ CH₃OH = 100: 1), 952 mg white solid was obtained (yield: 48.3%). Mp: 165-167°C. ¹H NMR (400 MHz, CDCl₃, δ): 0.70 (s, 6H, CH₃), 0.88-0.90 (m, 12H, CH₃), 0.93-0.94 (d, 6H, *J* = 6 Hz, CH₃), 1.01-2.36 (m, 68H, cholesterol), 3.18-3.19 (m, 2H, CH₂), 3.76 (s, 3H, OCH₃), 4.34-4.72 (m, 3H, CH), 5.39 (m, 2H, =CH). ¹³C NMR (100 MHz, CDCl₃, δ): 11.87, 19.36, 21.06, 22.57, 22.84, 23.89, 24.30, 28.00, 28.13, 28.22, 28.25, 31.88, 32.13, 35.84, 36.21, 36.55, 37.00, 38.50, 38.61, 39.53, 39.77, 42.33, 49.99, 52.32, 53.44, 56.21, 56.72, 74.35, 74.83, 122.52, 122.62, 139.73, 139.81, 155.82, 156.44, 173.13. HRMS calc. for C₆₃H₁₀₄N₂NaO₆ (M+Na⁺): 1007.7787, found: 1007.7731.

Synthesis of di-3-β-cholest-5-en-3-yl-ester-N-Lysine acid (4): Compound **3** (800 mg, 81.3 mmol) and 1.5 g LiOH·H₂O were stirred in the mixed solvent (10 mL H₂O, 10 mL THF) for 48 hours at rt, and concentrated. Then the mixture was acidified with HCl to pH = 2. White solid **4** was obtained by filtration (700 mg, 89%). Mp: 156-158°C. ¹H NMR (400 MHz, CDCl₃, δ): 0.70 (s, 6H, CH₃), 0.88-0.90 (m, 12H, CH₃), 0.93-0.95 (d, 6H, *J* = 5.6 Hz, CH₂), 1.03-2.35 (m, 68H, cholesterol), 3.13-3.14 (m, 2H, CH₂), 4.31-4.97 (m, 3H, CH), 5.38-5.60 (m, 2H, =CH). ¹³C NMR (100 MHz, CDCl₃, δ): 11.88, 18.74, 19.37, 21.08, 22.57, 22.83, 23.94, 24.31, 28.01, 28.26, 31.89, 35.86, 36.23, 36.56, 37.01, 38.51, 39.79, 42.34, 50.00, 56.24, 56.72, 74.50, 74.97, 122.56, 139.73, 156.28, 176.00. HRMS calc. for C₆₂H₁₀₂N₂NaO₆ (M+Na⁺): 993.7636, found: 993.7616.

Synthesis of 1: Compound 4 (727 mg, 75 mmol), compound 2 (238 mg, 75 mmol), Dcc (102.6 mg, 3 equiv) and HOBt (150 mg) were stirred in dry CHCl₃ for 24 h. The

mixture was concentrated and purified by chromatography (SiO₂, CHCl₃/ CH₃OH = 20: 1) to give **1** as a pale gray solid (428 mg, yield: 45%). Mp: 186-188°C; ¹H NMR (400 MHz, CDCl₃, δ): 0.69 (6H, s, CH₃), 0.88 (d, 6H, *J* = 1.6 Hz, CH₃), 0.90 (d, 6H, *J* = 1.6 Hz, CH₃), 0.93-0.94 (d, 6H, *J* = 6.4 Hz, CH₃), 1.00-2.04 (m, 72H, cholesterol), 3.10 (t, 2H, *J* = 1.2 Hz, CH₂), 3.70 (d, 2H, *J* = 2.8 Hz, CH₂), 4.03-4.05 (m, 1H, CH), 4.73-4.75 (m, 1H, CH), 5.26-5.40 (m, 2H, =CH), 7.86-7.89 (t, 1H, *J* = 7.6 Hz, Ar H), 8.01-8.08 (d, 1H, *J* = 7.6 Hz, Ar H), 8.43-8.45 (d, 1H, *J* = 7.6 Hz, Ar H), 8.59-8.61 (d, 1H, *J* = 8.4 Hz, Ar H), 8.67-8.69 (d, 1H, *J* = 6.8 Hz, Ar H). ¹³C NMR (100 MHz, CDCl₃, δ): 11.88, 18.73, 18.35, 21.06, 22.57, 22.84, 23.89, 24.29, 29.48, 31.86, 35.83, 36.22, 36.54, 36.94, 37.01, 38.47, 38.47, 38.61, 39.69, 39.79, 42.33, 49.99, 56.22, 56.72, 74.27, 74.77, 121.88, 122.48, 122.59, 122.76, 128.15, 129.01, 130.62, 131.20, 131.51, 132.33, 133.54, 139.83, 156.40, 164.07, 172.31. HRMS calc. for C₇₆H₁₁₁BrN₄NaO₇ (M+Na⁺): 1293.7534, 1295.7513; found: 1293.7427, 1295.7401.

2. Gelation properties:

Table S1 The gelation situation of 1	(2.5% wt/v) in different solvent.
---	------------------------------------

Solvent	H-C	S
Ethyl acetate	G	G
benzene	G	G
Xylene	G	G
toluene	G	G
cyclohexane	G	G
ethanol	Р	G
isopropanol	G	G

H-C: heating (> 85 °C) until the solid was dissolved and then cooling to room temperature. **S**: sonication at room temperature for 1 min after **H-C**. All the gelation process need less than ten minutes at room temperature; G: gel, P: precipitate from sol.

Fig. S1 Photographs of the gel's thixotropic response in isopropanol.

3. Morphological study:

Fig. S2 AFM images of sol-like state of **1** in toluene (0.57 wt%) with some viscosity, helical bias existed.

Fig. S3 AFM images of **1** gel (0.86 wt%) in toluene when treated with ultrasound for 30 s; b) was the magnified picture of a).

Fig. S4 SEM images of 1 gel in isopropanol; a) T-gel (1.63 wt%); b) broken gel; c) self-healing gel after 8 hours, the scale bars for a, b and c are 50, 100 and 50 μ m, respectively.

Fig. S5 SEM images of 1 gel (1.63 wt%) in isopropanol; a) T-gel, b and c) the magnification images of a; d) broken gel, e and f) the magnification images of d; g) self-healing gel, h and i) the magnification image of g; j) S-gel for 2 min, k and l) the magnification image of j. Scale bars for a-j are 20, 5, 1, 20, 2, 0.5, 20, 2, 0.5, 10, 2, 0.5 μ m, respectively.

4. Viscoelasticity study of the gels in toluene

Fig. S6 Pictures of the 1 gel in toluene, indicating the good gel state of 1 when a small strain was imposed.

Fig. S7 Amplitude sweep rheometry data (complex viscosity vs. shear strain) for **1** gel in toluene (0.86 wt%) at 25°C (angular frequency: 6.283 rad/s, f = 1.0 Hz, strain: 0.0001-1). The results indicated that shearing thinning phenomena happened when the shear strain > 0.04.

Fig. S8 The frequency sweep data of broken gel of **1** for the second cycle; angular frequency from 0.1-100 rad s⁻¹; keep a shear strain at 500% to destroy the gel state, deformation happened, and G' > G', indicating destroyed ring structure and the flowing state.

Fig. S9 The frequency sweep data of the broken gel for the third cycle; angular frequency from $0.1-100 \text{ rad s}^{-1}$.

Fig. S10 Amplitude sweep rheometry data (storage modulus G' and loss modulus G'' vs. shear strain γ) for the gel **1** in toluene with a concentration of 1.34 wt% and 1.70 wt% at 25°C (angular frequency: 6.283 rad s⁻¹), respectively.

Fig. S11 Dynamic frequency sweep rheometry data for gel **1** in toluene with a concentration of 1.34 wt% and 1.70 wt% at 25°C, respectively (angular frequency from 0.05-100 rad s⁻¹, strain kept at 1% without deformation, $\vec{G} > \vec{G}$).

5. Uv-vis and CD spectra study:

Fig. S12 UV-visible absorption of the solution $(1 \times 10^{-4} \text{ M})$ and T/S gel (1.24 wt%) in isopropanol.

Fig. S13 The CD spectra of 1 in isopropanol with different concentration.

Fig. S14 CD spectra of 1.70 wt% T-gel in toluene after shearing.

Fig. S15 CD spectra of T-gel of **1** in toluene before and after treated with sonication for 2 min (0.86 wt%).

Fig. 16 CD spectra of the samples with the same concentration of solution and sol from diluted gel.

Reference

1. J. H. Qian, X. H. Qian, Y. F. Xu, S. Y. Zhang, Chem. Commun. 2008, 35, 4141-4143.