Supplementary Information

Table S1 CYP102A1 diameters in solution and share of objects measured by PCS. The series of 7 measurements was carried out to confirm a stability of the measurements in time. Measurements N_{2} -2 were carried out at the start. Measurements N_{2} -5 were carried out in 1 hour after PCS measurement start. Measurements N_{2} 6-7 were carried out in 1.5 hour after PCS measurement start. Experimental conditions: see "PCS measurements" in the main text.

№	Diameter, nm	Share of objects, %		
1.	14.1±5.8	98.54		
2.	16.1±6.4	98.45		
3.	12.1±7.4	99.69		
4.	10.8±7.7	99.37		
5.	11.8±7.4	99.1		
6.	11.3±6.1	98.67		
7.	16.6±7.7	99.42		

Table S2 χ^2 -criterion for approximation experimental curves of density of CYP102A1 distribution with heights $\rho(h)$ by Gaussian.

	Experimental conditions/	Approximation by		Approximation by
	AFM	one Gaussian, χ^2		double Gaussian, χ^2
Density of	Buffer/ Dimension 3100	0.7	>	0.2
CYP102A1 distribution with	Air/ Dimension 3100	1.1	$^{>}$	0.3
heights $\rho(h)$ obtained by standard	Air/ NTEGRA Aura	2.7	$^{>}$	0.7
probe	Vacuum/ NTEGRA Aura	2.0	>	1.6