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1 Thin Layer Chromatography

Thin layer chromatography (TLC) was performed on alu-
minium sheets covered with HPTLC Silica gel 60 F254 (Merck
KGA, Darmstadt, Germany). Two measurements with differ-
ent eluents were performed:

1. cyclohexane/isopropanol/water 30/40/6 (V/V), the pro-
cedure described in application #400710 of Macherey-
Nagel, and in the literature1.

2. chloroform/methanol/water 65/25/4 (V/V), described by
Avanti Polar Lipids, Al, USA.

An UV lamp was used to make the substances visible.

2 Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) was performed on a
Setaram microDSC. 0.1 ml of sample (DMPC multibilayers in
H2O and DMPC multibilayers in D2O) were measured against
0.1 ml of H2O or D2O, respectively, with a cooling/heating
rate of 0.1 K/min. The shifts of the phase transition tempera-
tures induced by the H2O/D2O exchange is only minor as can
be seen in figure 1.
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Fig. 1 Differential scanning calorimetry (DSC) measurements of
DMPC in H2O (dash-dotted lines) and D2O (dashed lines). Shown
are the cooling scan (top) and heating scan (bottom). The insets
show enlarged versions of the pretransition and main transition
peaks.
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3 Calculation of the area per molecule

Spherical droplets with radius r and diameter 2r = ∅ have a
volume of V = 4/3πr3, a surface of S= 4πr2, and correspond-
ingly S/V = 3/r = 6/∅ ∝ 1/∅. Approximating the density of
all components with 1, the volume of spherical droplets in a
unit sample volume is given by the concentration of perdeuter-
ated hexadecane, [dHD]. Therefore, the surface area of the
emulsion droplets in the same volume is

area ∝
[dHD]

∅
. (1)

As the number of DMPC molecules in the same volume is
proportional to the concentration of DMPC in the sample,
[DMPC], one finally arrives at

area per molecule ∝
[dHD]

[DMPC] ·∅
. (2)

This number is only a relatively rough measure for the
true value because it assumes that the emulsion droplets are
monodisperse and all DMPC molecules are adsorbed to the
interface. The formula neglects the surface area occupied by
NaGC molecules because the NaGC molecules are water sol-
uble and the amount of NaGC is much lower than the one of
DMPC.

4 Fit functions

The fit function used for the determination of the long-range
motional component has been discussed in detail before2. It
is

S(Q,ω) = a ·X(Q,ω)⊗
[A1(Q) ·δ (ω)+(1−A1(Q)) ·L1(Q,ω)]⊗

[A2(Q) ·δ (ω)+(1−A2(Q)) ·L2(Q,ω)] (3)

where X is discussed in the following, δ is the delta function,
and L1 and L2 denote Lorentzians. The first term is caused by
long-range motions, the two latter ones by localized motions.

4.1 Flow motions

Assuming flow-like motions with a Maxwell-Boltzmann dis-
tribution of the flow velocities, X is a Gaussian in ω with a
standard deviation σ(Q) = v ·Q where v is the most probable
flow velocity.

4.2 Diffusion

Assuming diffusion, X is a Lorentzian in ω with a half width
at half maximum Γ(Q) = D ·Q2 where D is the diffusion co-
efficient.

References
1 F. M. Helmy and M. H. Hack, Journal of Chromatography B: Biomedical

Sciences and Applications, 1986, 374, 61.
2 S. Busch, C. Smuda, L. C. Pardo and T. Unruh, Journal of the American

Chemical Society, 2010, 132, 3232.

2 | 1–2

Electronic Supplementary Material (ESI) for Soft Matter
This journal is © The Royal Society of Chemistry 2012


