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I. MODEL FOR MEMBRANE SURFACE WITH IN-PLANE ORDER

A. Continuum model

Biological membranes are 2D surfaces embedded in three dimensional space. They are fluid like in

the lateral direction, ie., they flow when sheared , while they resist deformation in the perpendicular

direction, ie., bending modes cost energy. The equilibrium bending energy and the associated surface

conformations are described by the Helfrich free energy functional[1],

Hsur =

�

S
dS

�
κH

2
+ σ + κGR

�
+

�

V
∆p dV. (1)

The curvature invariants are the mean curvature, H = Tr(Kab), and Gaussian curvature, R = det(Kab),

where Kab is the second fundamental form known as the curvature tensor. κ, σ and κG are phenomeno-

logical parameters associated with membrane rigidity, surface tension and Gaussian rigidity respectively.

∆p is the osmotic pressure difference.

Anisotropy arising from the presence of various internal degrees of freedom is represented by a p-atic

vector field , �m, defined on the surface of the membrane. We will be concentrate on nematic fields,

p = 2, throughout. The general form of the nematic field deformation energy is given by the Frank’s free

energy[2–4],

Hnem =
1

2

�
dS

�
K1(Div(m̂))

2
+K3(Div(m̂

⊥
))

2
�
.

Since we are only working in the one-constant approximation: KA = K1 = K3, we have,

Hnem =
KA

2

�

S
dSTr(∇m̂ : ∇m̂) (2)

KA is the stiffness constant in the one constant approximation of the Frank’s free energy for nematic

field. The covariant derivative ∇ implicitly couples the nematic to the surface curvature. The elastic

behaviour of the membrane is made anisotropic by explicitly coupling the surface field to the curvature

tensor with interactions of the form[5],

Hanis =
1

2

�

S
dS

�
κ�

�
m

µ
Kµνm

ν − C
�
0

�2
− κ⊥

�
m

µ
⊥Kµνm

ν
⊥ − C

⊥
0

�2
�
. (3)
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The in-plane vector field induce directional curvatures, C
�
0 and C

⊥
0 , on the membrane parallel and

perpendicular to its long axis. Their presence further modifies the membrane stiffness by κ� and κ⊥
along and normal to the nematic orientation respectively. The total energy of the membrane with an

in-plane surface field is then,

Htot = Hsur + Hnem + Hanis (4)

II. DISCRETIZED MODEL

In this approach, the vesicle, a two dimensional closed surface, embedded in three dimensional space,

is discretized into a set of, interconnected, self avoiding, triangular plaquettes. Each of these plaquette

correspond to a flat bilayer patch of the membrane. The T plaquettes, constituting L independent links,

intersect at N vertex points. The topology of the closed discretized surface, is defined by the Euler

characteristics χ = N + T − L, with χ = 2 for a sphere.

FIG. 1: (Color online) A membrane surface discretized into a triangular map with N vertices, T triangles and L
links. The nematic field m̂(v), in an isotropic phase in the illustration, is defined as an unit vector on the tangent
plane at each vertex v.

In this representation, c1(v) and c2(v) are the principal curvatures at a vertex v and ê1(v) and ê2(v)

are the corresponding principal directions, see Sec:III for details. Further, the in-plane orientational

order is discretized into a surface vector field m̂(v), of unit magnitude, defined on the tangent plane

of each vertex v. In the Darboux frame, see Fig.3, m̂(v) = [cosϕ(v), sinϕ(v), 0], with ϕ(v) being the

orientation of m̂(v) with respect to ê1(v).

The bending energy Eq.(1), in the discretized form, is given by,

Hsur =

N�

v=1

A(v)

�
κ

�
c1(v) + c2(v)

2

�2
+ σ + κG c1(v)c2(v)

�
+∆pV. (5)

A(v) is the area enclosed by vertex v, calculated as A(v) =
�

T∈v A(T )/3. The summation is carried over

all triangles that have v as one of its vertex and A(T ) is the area of the triangle T . The interaction of the

nematic field, in Eq.(2), is modelled using the Lebwohl Lasher model. The corresponding Hamiltonian

is,

Hnem = −�LL

2

�

�vv� �

�
3

2
cos

2
(ϕ(v, v

�
))− 1

2

�
. (6)

ϕ(v, v
�
) is the angle between m̂(v) and m̂(v

�
), calculated using parallel transport technique defined in

Sec.III. The anisotropic field curvature is evaluated in the local Darboux frame and has the form,

Hanis =

N�

v=1

A(v)

�
κ�[H�(v)− c

�
0]

2
+ κ⊥[H⊥(v)− c

⊥
0 ]

2
�
. (7)
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κ� and κ⊥ are the directional bending rigidities parallel (or antiparallel) and perpendicular to the field

�m. These phenomenological parameters, along with the directional spontaneous curvatures c
�
0 and c

⊥
0 ,

quantify the interaction strength of the protein with the membrane. The directional curvatures of the

membrane at a vertex v, calculated using Gauss formula, are H�(v) = c1(v) cos
2
ϕ(v) + c2(v) sin

2
ϕ(v)

and H⊥ = c2(v) cos
2
ϕ(v) + c1(v) sin

2
ϕ(v).

III. CURVATURE CALCULATION AND PARALLEL TRANSPORT OF VECTOR FIELDS

( Reproduced from [6] for the convenience of readers)

Contrary to the standard differential geometry of continuum models, the discretized formulation in this

section is given in Cartesian coordinates. The surface is discretized by a triangulation T N
consisting

of N vertices connected by NL = 3(N − 2) links, or tethers, forming closed planar graphs. The

graph form a system of NT = 2(N − 2) triangles corresponding to a surface with total Euler index

χ = N − NT − NL = 2. Each vertex v takes a position �X(v) in R3
. The triangulation and the vertex

position together form a discretized surface, a patch of which is given in Fig. 2(a). The self-avoidance

�R(e)N̂(e)

Φ(e)

N̂ [f1(e)]
N̂ [f2(e)]

N̂(v)

v

1

2

3

4

5

6

(a)

Φ(e)

v

1

2

6

N̂ [f1(e)]
N̂ [f2(e)]

(b)

FIG. 2: (Color online) (a) A surface patch showing a one ring neighbourhood around vertex v. N̂(v) represents
the normal to the tangent plane at v. �R(e) represents the vector along an edge e, while N̂(e) is its normal. (b)
the signed dihedral angle Φ(e) between faces, f1 and f2, sharing an edge e.

of the surface is ensured by assigning a hard core spherical bead of unit diameter to each vertex and a

maximal tether distance of
√
3. This is in general not sufficient to impose strict self avoidance [7, 8], but

a mild constraint on the dihedral angle between two faces sharing a tether restores self avoidance.

The in-plane orientational field can be included by defining a unit vector m̂(v) in the tangent plane at

each vertex v. In the following we will give meaning to this statement by analysis of the local surface

topography and in turn calculate the curvature tensor, principal directions and curvature invariants[9, 10].

The approach is based on the construction of the discretized ”shape operator” given by the differential

form −dN̂ in the plane of the surface, which contains all information about the local surface topography.

Consider a local neighborhood around a vertex v, as shown in Fig.2(a). �R(e) is the edge vector that links

v to a neighboring vertex. The set of edges linked to v is {e}v, while the oriented triangles or faces with

v as one of their vertex is {f}v. The calculation of the surface quantifiers at v is restricted to the one

ring neighborhood around it, which is well defined by {e}v and {f}v. Similarly the set of faces sharing

an edge is given by {f}e = [f1(e), f2(e)]. The normal to an edge e then is defined as,

N̂(e) =
N̂ [f1(e)] + N̂ [f2(e)]���N̂ [f1(e)] + N̂ [f2(e)]

���
, (8)
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where N̂ [f1(e)] and N̂ [f2(e)] are the unit normal vectors to faces f1(e) and f2(e) respectively.

We will now construct the shape operator at every vertex v. Toward this, we define

H(e) = 2

����R(e)

��� cos
�
Φ(e)

2

�
. (9)

which quantifies the curvature contribution along the direction mutually perpendicular to �R(e) and N̂(e)

[9, 10]. Φ(e), as illustrated in Fig.2(b), is the signed dihedral angle between the faces, f1(e), f2(e), sharing

the edge e calculated as

Φ(e) = sign

��
N̂ [f1(e)]× N̂ [f2(e)]

�
· �R(e)

�
arccos

�
N̂ [f1(e)] · N̂ [f2(e)]

�
+ π. (10)

The discretized “shape operator”, which quantifies both the curvature and the orientation of e is thus

the tensor

Se(e) = H(e)

�
R̂(e)× N̂(e)

� �
R̂(e)× N̂(e)

�
, (11)

where R̂(e) = �R(e)/|�R(e)| is the unit vector along edge e. Having defined the shape operators, {Se(e)},
along the edges of the vertex v, we now proceed to compute the shape operator at v. The normal to the

surface at v can be calculated as,

N̂(v) =

�
{f}v

Ω[A(f)] N̂(f)
���
�

{f}v
Ω[A(f)] N̂(f)

���
, (12)

with A(f) denoting the surface area of the face f and the normalized weight factor Ω[A(f)] is proportional

to the area of the face. The projection operator, P(v) = −N̂(v)N̂(v), projects {Se(e)} on to the tangent

plane at v [9, 10]. The shape operator at the vertex v is then a weighted sum of these projections given

by

Sv(v) =
1

A(v)

�

{e}v

W (e)P(v)
†
Se(e)P(v). (13)

A(v) =
�

{f}v
A(f)/3 is the average surface area around v, while the weight factor for an edge is

calculated as W (e) = N̂(v) · N̂(e). The shape operator Eq.(13) at the vertex v is expressed in coordinates

of the global reference system [x̂, ŷ, ẑ]. Notice that, by construction, the vertex normal N̂(v) is an

eigenvector of, Sv(v), corresponding to eigenvalue zero. The two other principal directions t̂1(v), t̂2(v),

whose corresponding eigenvalues are the principal curvatures, define the tangent plane at the vertex v.

A local coordinate frame called the Darboux frame [t̂1(v), t̂2(v), N̂(v)], see Fig.3, can then be defined

at v. The transformation from the global to Darboux frame, see Fig. 3, is obtained by first applying a

EH

EH
t̂1

t̂2

x̂
�

ŷ
�

x̂
��
= t̂1

ŷ
��
= t̂2

ẑ
��
= N̂ẑ

�
= N̂

x̂

ŷ

ẑ

N̂

Global Darboux

FIG. 3: (Color online) Transformation from a global to local coordinate frame.

Householder transformation(H), see Appendix A, to rotate the global ẑ direction into N̂(v), while x̂ and

ŷ are rotated into vectors x̂
�
, ŷ

�
in the tangent plane at the vertex v. The shape operator, at v, in this

frame C(v) = H
†
(v)Sv(v)H(v) is a 2x2 minor, with the two principal curvatures c1(v) and c2(v) as its
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eigenvalues. The corresponding eigenvector matrix E(v) transform [x̂
�
, ŷ

�
, N̂(v)] into the Darboux frame

at v. Any vector in the global frame, can now be transformed to this local frame by the transformation

matrix E(v)H(v).

We are now in the position to write up the discretized form of Helfrich’s free energy, at a vertex v,

based on the local curvature invariant M(v) = [c1(v) + c2(v)]/2 and K(v) = 2c1(v)c2(v):

Hsur =

N�

v=1

A(v)

�
κ

2
(c1(v) + c2(v))

2
+ κ̄ c1(v)c2(v)

�
. (14)

The calculation of the discrete curvature tensor has been performed by other methods [11, 12], however

we find the method used in this paper to be the most accurate in describing surfaces with prescribed

geometry. The local Darboux frame is very useful for the characterization of an in-plane vector field m̂(v).

For convenience, we choose c1(v) to be the maximum principal curvature and t̂1(v) the corresponding

principal direction. The local orientational angle ϕ(v) of m̂(v) will always refer to this Darboux frame.

In order to compare the orientation of two distant in-plane vectors at the surface, it is necessary to

perform parallel transport of the vectors on the discretized surface. In practice we need only to define

the parallel transport between neighboring vertices, i.e. a transformation m̂(v
�
) → Γ(v, v

�
)m̂(v), which

brings m̂(v) correctly into the tangent plane of the vertex v
�
, so that its angle with respect to the geodesic

connecting v and v
�
is preserved. If r̂(v, v

�
) is the unit vector connecting a vertex v to its neighbor v

�
and

�ζ(v)=P(v)r̂(v, v
�
) and �ζ(v

�
)= P(v

�
)r̂(v

�
, v) are its projection on to the tangent planes at v and v

�
; then

our best estimate for the directions of the geodesic connecting them, are the unit vectors ζ̂(v), ζ̂(v
�
). The

decomposition of m̂(v) along the orientation of the geodesic and its perpendicular in the tangent plane

of v is thus:

m̂(v) =

�
m̂(v) · ζ̂(v)

�
ζ̂(v) +

�
m̂(v) · (N̂(v)× ζ̂(v))

� �
N̂(v)× ζ̂(v)

�
(15)

Parallelism now demand that these coordinates, with respect to the geodesic orientation, are the same

in the tangent plane of v
�
, therefore:

Γ(v, v
�
)m̂(v) =

�
m̂(v) · ζ̂(v)

�
ζ̂(v

�
) +

�
m̂(v) · (N̂(v)× ζ̂(v))

��
N̂(v

�
)× ζ̂(v

�
)

�
(16)

This parallel transport operation allow us to define the angle θ(v, v
�
) between vectors in the tangent plane

at neighboring vertices, and in turn their cosine and sine as:

cos(ϕ(v, v
�
)) = m̂(v

�
) · Γ(v, v

�
)m̂(v); (17)

sin(ϕ(v, v
�
)) =

�
N̂(v

�
)× m̂(v

�
)

�
· Γ(v, v

�
)m̂(v)

We can now define the lattice models, corresponding to Eq.(2), for the in-plane orientational field, e.g.,

the XY-model on a random surface:

HXY = −�XY

2

�

�vv� �

cos[ϕ(v, v
�
)] (18)

or the Lebwohl-Lasher model on a random surface:

HLL = −�LL

2

�

�vv� �

�
3

2
cos

2
(ϕ(v, v

�
))− 1

2

�
(19)

Furthermore, we are now in a position to calculate, at a given vertex v, the directional curvatures along

and perpendicular to the orientation of the in plane vector field n̂(v) by use of Gauss formula:

H(v)� = c1(v) cos
2
[ϕ(v)] + c2(v) sin

2
[ϕ(v)]

H(v)⊥ = c1(v) sin
2
[ϕ(v)] + c2(v) cos

2
[ϕ(v)]

(20)
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IV. MONTE CARLO PROCEDURE

( Reproduced from [6] for the convenience of readers)

The equilibrium properties of the discretized surface can now be evaluated from the analysis of the total

partition function, i.e., the sum of Boltzmann factors for all surface configurations and triangulations.

For simplicity, we consider the situation with just one in-plane orientational m̂(v) field defined at each

vertex

Z(N, κ, κ̄, �, ..) =
1

N !

�

T N

N�

v=1

�
d �X(v)

�
dϕ(v) exp

�
−β

�
H

c
({ �X}, T N

, {ϕ}) + USAS

��
(21)

where USAS is the potential that ensures the self-avoidance of the surface and ϕ(v) is integrated over

the unit circle or half unit circle for the XY field and the nematic field respectively. { �X} and {ϕ} are,

respectively, the complete set of vertex positions and orientational angles. Further, we set β =
1

kBT = 1.

In practice, a surface configuration is represented by a tuple η = ({ �X}, T N
, {ϕ}), which must be

updated during the Monte Carlo simulation procedure. The Monte Carlo updating scheme can now

be decomposed into three move classes, so each of the three sets of degrees of freedom are updated

independently to keep it simple and ensure fulfillment of detailed balance:

Vertex shifts: represent the updates of the vertex positions, keeping T N
, {ϕ} fixed, thus allowing

for shape changes of the membrane. The attempt probability to change to a new configuration

η
�
= ({ �X �}, T N

, {ϕ}), with a chosen vertex moved to a new position within a cube of side 2σ centered

around its old position, is ω(η|η�) = ω(η
�|η) = ([2σ]

3
N)

−1
. σ is appropriately chosen to get a reasonable

acceptance rate of 30–50%. In our simulations σ = 0.1 is chosen.With this surface updating operation,

the curvature tensor and thus the principal axis changes. Since the angle {ϕ} is kept fixed, the set of

orientations {m̂}, in the global frame, are changed following the local surface configuration, Fig. 4(a).

(a)Vertex move

(c) In−plane field flip

(b) Link Flip

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ
�

t̂1t̂1

t̂1

t̂1

t̂1

t̂1

m̂

m̂

{ �X} → { �X �}

{T } → {T �}

{ϕ} → {ϕ�}

FIG. 4: Monte Carlo moves, a) vertex shift, b) link flip and c) angle rotation. Surface vector field, m̂, is
represented with solid arrow while principal directions ê1 and ê2 are marked with dotted arrows. ϕ is the angle
m̂ subtends with ê1.

Link flip: represents updating of the triangulation. Here a link, e connecting a vertex v to v
�
, is picked

at random and an attempt is made to flip it to the pair of opposite vertices common to v and v
�
. The

attempt probability to change to configuration η
�
= ({ �X}, T �N

, {ϕ}) is then ω(η|η�) = ω(η
�|η) = 1/NL.

Similar to vertex shifts, the actual orientations {m̂} are now changed, following the local surface

configuration, Fig. 4(b).
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Angle rotation: the orientation of the in-plane vector m̂(v), at a randomly chosen vertex v, is updated.

The vector is rotated to a new, randomly chosen, direction in the tangent plane, keeping the vertex posi-

tions and link directions fixed. As a result of which the orientational angle is now ϕ
�
(v) = ϕ(v) +∆ϕ(v).

The attempt probability to configuration η
�
= ({ �X}, T N

, {ϕ�}) is ω(η|η�
) = ω(η

�|η) = (2σϕN)
−1

, where

σϕ � π is the maximum increment of the angle. The surface topography is not affected by this move,

Fig. 4(c).

For each of the above moves, the acceptance probability is:

acc(η|η�) = min(1,
ω(η

� |η)
ω(η|η�

)
exp(−β

�
H(η

�
)−H(η)

�
) (22)

The duration of a Monte Carlo simulation is measured in MCS (Monte Carlo sweeps per Site), which

represents N attempted vertex moves, 3(N − 2) attempted flips and N attempted rotations of n̂.

V. CONFORMATIONAL DIAGRAM IN C�
0 SPACE

A high resolution version of Fig.1 in the manuscript is presented here. The nematic field remodels a

spherical membrane into tubes and branched structures for C
�
0 > 0, while tubes, discs and caveola like

structures are seen for C
�
0 < 0

(a) Prolate (b) Tubular (c) Twisted disc (d) Caveola like

(e) Tubular (f) Spirals (g) Broad neck (h) Narrow neck

0

0.2 0.4 0.5 0.6

-0.6-0.4-0.2

FIG. 5: High resolution version of Fig.1 in the manuscript. Two +1/2 disclination pair at the end caps of a tube
while they repel each other in case of a non tubular structures, eg. in case of the disc like conformation. The
parameter values are κ = 10, �LL = 3, κ� = 5 and κ⊥ = 0.
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VI. DISCLINATIONS AND THEIR SPATIAL ORGANIZATION.

An in-plane vector field, frustrated by the spherical topology of the surface, will have orientational

singularities (disclinations) in its ground state. The sum of the topological charge of these disclinations on

a spherical surface is equal to the two. As, for a nematic field, the energy of a disclination is proportional

to the square its charge, four disclinations, each of strength +1/2, will be present, on a surface of spherical

topology, at the ground state.

A. Types of disclinations

In the study reported here, we only observe disclinations of strength +1/2 and -1/2 as in Fig.6(a) &

6(b) respectively, which are illustrated in the figure below.

(a) (b)

FIG. 6: (a) +1/2 disclination and (b) -1/2 disclination proliferated at low values of �LL or at high values of C�
0 .

B. Localization of disclinations

The interaction between disclinations are modified by the Gaussian curvature of the surface[13]. The

localization of the defects depends on the morphology of the surface. When κ� = κ⊥ = 0, the defect

cores repel each other and position themselves on the vertices of a tetrahedron.

(a) (b)

FIG. 7: (a) The membrane deforms into a tube for κ� = 5 and C�
0 = 0.4 and �LL = 3. Two +1/2 defects move

towards each other and pair at the end caps while the defect pairs move away from each other. (b) Branched

tubular membrane for κ� = 5 and C�
0 = 0.4 and �LL = 1. The intersection of a branch is stabilized by two -1/2

disclinations in the negative Gaussian curvature region around the junction.

In presence of a directional bending modulus, the membrane tubulates leading to pairing of two +1/2

defects at its end cap. The repulsion between these positive disclinations is screened by the positive

Gaussian curvature of the end cap (see Fig.7(a)). Negative defects, appearing through spontaneous
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defect pair creation, stabilizes branched membrane conformations, by locating themselves at the negative

gaussian curvature regions at the junction, as shown in Fig.7(b).

VII. MECHANISMS OF TUBULATION AND BRANCHING

When the thermal fluctuations are weak or when the nematic coupling is strong, it is unfavorable to

create defect pairs, discussed earlier. In such cases, there is an effective repulsion between the defect pairs

at the end caps of a tube due to the formation of tubular sections favored by the spontaneous directional

curvature.

(a) (d)Defect PairingTetrahedral Tubulation(b) (c)

FIG. 8: Vesicle morphogenesis into a tube and the effective repulsion between defect pairs at the end caps. Shown
are membrane shapes for κ = 10kBT , J2 = 3kBT , κ� = 5kBT , C

�
0 = 0.4 and β = 1/kBT = 5.

A. Stabilization of branched shapes

Here we look at the case of branching of tubes. The negative defects, resulting from the thermally

induced defect pair creation, move towards region of negative Gaussian curvature in Fig.9(c).

a) Tetrahedral e) Branched shaped)Branch Stabilizationc) Defect Proliferationb) deformation

 two −1/2 disclinations
Neck stabilized by

Paired defects

defects
Paired

FIG. 9: Defect proliferation and stabilization of junctions by two -1/2 defects.

The −1/2 defects are attracted to regions with negative gaussian curvature. When two -1/2 defects

reach a junction, they stabilize the branch. as in Fig.9(d). The unpaired -1/2 defects continue to remodel

the membrane till its forms a junction with another -1/2 defect or annihilates with a +1/2 defect. A pair

of +1/2 and -1/2 disclinations about to annihilate is shown in the leftmost branch of Fig.9(e). If Nmhalf

is the number of -1/2 disclinations proliferated, the criterion for branching is Nmhalf ≥ 2.

VIII. STABILITY OF TUBULAR MEMBRANES WITH NEMATIC ORDER

In this supplementary section we work out the free energy expression for a general fluid tubular membrane

of uniform radius with nematic ordered membrane inclusions. The starting point for the evaluation is
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the general curvature free energy form for a fluid membrane equipped with nematic inclusions:

Htot =

�
dA

�
κ

2
(2H)

2
+

κ�

2
(H� − C

�
0 )

2
+

κ⊥
2
(H⊥ − C

⊥
0 )

2
�
+ Hnem,

where, the in-plane elastic free energy of the nematic ordering field has the form

Hnem =
KA

2

�
dATr (∇m̂ : ∇m̂) . (23)

First, we consider a cylindrical membrane with nematic order. The free energy per tube length takes the

simple form:

fcyl = 2πr

�
κ�(x/r − C

�
0 )

2
+ κ⊥((1− x)/r − C

⊥
0 )

2
�
+ 2κπ/r (24)

where r is the tube radius, x = cos
2
(ϕ) is representing the orientation of the nematic field in the

Darboux frame, which just follow the cylinder axis and the surface tangent perpendicular to it with

principal curvatures 0 and 1/r. For a perfect nematic order, the minimum free energy configuration obey

the stationary condition,
∂fcyl
∂x = 0,

∂fcyl
∂r = 0

r̄ =

�����

�
κ
2

� �
κ� + κ⊥

�
+ κ⊥κ�

κ⊥κ�

�
C

�
0 + C

⊥
0

�2 (25)

x̄ = cos
2
(ϕ̄) =

�
κ�C

�
0 − κ⊥C

⊥
0

�
r̄ + κ⊥

κ⊥ + κ�
(26)

Note that the above expressions are for the general case of κ⊥ �= 0, κ� �= 0 and x = 1 when κ⊥ = 0

and x = 0 when κ� = 0. So, in general both ϕ̄ and r̄ are set by the model parameters. Eqn.(23) is

the only part of the free energy, which depends on the orientation of the nematogens. Perfect nematic

order means that the nematic orientation will follow the geodesic lines on the cylinder. A well-known

result from surface differential geometry that the geodesic lines on a cylinder in general are lines paralel

to the long axis, circles perpendicular to the long axis or helical spirals, which are characterized by a

fixed angle between the curve and the long axis of the helix (the first principal direction of the cylinder).

The mean-field solution above precisely corresponds to that situation. In general, increasing κ leads to

increasing radius r̄, while increasing C
�
0 and C

⊥
0 leads to decreasing radius. Another important point is

to ensure that the stationary solution found is a stable solution, i.e. the second derivative of f is positive

definite for the solution.




∂2f
∂2x

∂2f
∂x∂r

∂2f
∂r∂x

∂2f
∂2r





x̄,r̄

=
4π

r̄3




(κ� + κ⊥)r̄

2 −(κ�x̄− κ⊥ + κ⊥x)r̄

−(κ�x̄− κ⊥ + κ⊥x̄)r̄ κ�x̄
2
+ κ⊥(1− x̄)

2
+

κ
2



 (27)

Since the elastic moduli are all positive (or zero) this stability matrix positive definite for all parameter

values with r̄ > 0.In the following we would like to investigate if the above observations can be generalized

to include curved tubular surfaces as the results from computer simulations indicate. General tubular

surfaces are also called canal surfaces and first we remind about some general nomenclature for curves

and surfaces which is relevant for the analysis of canal surfaces.

Canal surfaces
In the following we will introduce a class of surfaces, which is developed by a circle of radius r, with

center along a general space curve �xC(s), and oriented in the normal plane of the curve. It is called a

canal surface with constant radius and spine curve C, with s being the arc length along this curve. The

Frenet frame is a good starting point for the parameterization of the surface. With �t(s), �p(s),�b(s) being

the unit tangent, normal and binormal to the curve.
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�x(s, θ) = �xC(s) + r

�
cos θ �p(s) + sin θ�b(s)

�
(28)

∂s�x = (1− λr cos θ) �t(s) + τr cos θ�b(s)− τr sin θ �p(s) (29)

∂θ�x = r

�
− sin θ �p(s) + cos θ�b(s)

�
(30)

The basic intrinsic and extrinsic geometrical quantifiers can easily be established, for such canal surfaces

with constant curvature λ and torsion τ .

The metric , the mean curvature and the Gaussian curvature then have the forms:

g = r
2
(1− λr cos θ)

2
H =

2λr cos θ − 1

2r(1− λr cos θ)
and G =

−λ cos θ

r(1− λr cos θ)
(31)

The curvature free energy: We are now in the position to calculate the free energy Eq.(1) of a helical

canal surface. We will consider each contribution separately. First, the usual Helfrich term:

Hsur =
κ

2

�
√
g ds dθ (2H)

2
=

κ

2

� L

0
ds

� 2π

0

(1− 2rλ cos θ)
2

r(1− λr cos θ)
=

κ

2

L

r

2π�
1− (λr)

2
(32)

The expression Eq.(32) is very similar to the Helfrich free energy of a torus. Again, we can note an

expression for a helical canal surface, where the spine curve torsion do not enter. It is also follows that

for a given spine curve curvature λ this functional is minimal for λr =
1√
2
, which is just the condition for

a Clifford torus. Finaly, it is observed that the Gaussian curvature integrate up to zero over the surface

as expected.

Let us now continue with the terms involving directional curvature elasticity. First, the directional

curvature for a nematogen oriented with an angle ϕ with respect to the Darboux frame. With x = cos
2
(ϕ)

and Euler’s relations they become:

H� =
x

r
− (1− x)λ cos θ

(1− λr cos θ)
and H⊥ =

1− x

r
− xλ cos θ

(1− λr cos θ)
(33)

The remaining curvature elastic terms are:

H
�
anis =

κ�

2

�
dA(H� − C

�
0 )

2
=

κ�

2

� L

0
rds

� 2π

0
dθ

��
x
r − C

�
0

�
+ λ cos θ

�
rC

�
0 − 1

��2

(1− λr cos θ)

=
κ�

2

2πLr�
1− (λr)

2

�
1− x

r

�2

+
κ�

2
2πLr

�
1

r
− C

�
0

��
2x− 1

r
− C

�
0

�
(34)

and

H
⊥
anis =

κ⊥
2

�
dA

�
H⊥ − C

⊥
0

�2
=

κ⊥
2

� L

0
rds

� 2π

0
dθ

�
(1− x− rC

⊥
0 ) + λr cos θ(rC

⊥
0 − 1)

�2

r(1− λr cos θ)

=
κ⊥
2

2πLr�
1− (λr)

2

�
x

r

�2
+

κ⊥
2

2πLr

�
1

r
− C

⊥
0

��
1− 2x

r
− C

⊥
0

�
(35)

The nematic term:
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Now, we can focus on the nematic term, defined in Eqn.(23)

Hnem =
KA

2

�
d
2
ξ
√
gTr (∇m̂ : ∇m̂)

=
KA

2

�
d
2
ξ
√
g g

νµ
�
∂νm̂− N̂(N̂∂νm̂)

��
∂µm̂− N̂(N̂∂µm̂)

�

=
KA

2

�
d
2
ξ
√
gg

νµ
(∂νϕ−Aν) (∂µϕ−Aµ) (36)

m̂ can here be chosen in any local orthonormal coordinate system:

m̂ = cos(ϕ)ê1 + sin(ϕ)ê2 (37)

It is a natural choice for us to use the principal directions for the curvature tensor: ê2 = t̂ and ê1 = êθ.

We can now work out some of the ingrdients in Eq(36). First we remember that

ê1 =
∂N̂

∂θ
= − sin(ϕ) p̂+ cos(ϕ) b̂, ê2 = t̂ (38)

The geometric vector potential Aν = ê1∂ν ê2 takes in this basis the form:

Aθ = ê1∂θ t̂ = 0, As = ê1∂st̂ = −λ sin θ (39)

Hnem =
KA

2

�
dθ ds

1

r(1− λr cos θ)
(40)

��
(1− λr cos θ)

2
+ (rτ)

2
�
(∂θϕ)

2
+ r

2
(∂sϕ+ λ sin θ)

2 − 2τr
2
∂sϕ∂θϕ− τr

2
λ sin θ∂θϕ)

�

For the ansatz ϕ = ϕ0, the free energy becomes:

Hnem =
KA

2

2πrL�
1− (λr)2

�
λ
2 − λ

2 1−
�

1− (λr)2

(λr)2

�
=

KA

2

2πL

r

�
1−

�
1− (λr)2

�
. (41)

We can put together the elastic free energy from the curvature contributions and the nematic contributions

to the free energy.

Htot = Hnem + Hsur + H
�
anis + H

⊥
anis

=
2πL

r

KA

2

�
1−

�
1− (λr)2

�
+

2πL

r






κ
2 +

κ�
2 (1− x)

2
+

κ⊥
2 x

2

�
1− {λr)2




 (42)

+
2πL

r

�
κ�

2
(1− rC

�
0 )(2x− 1− rC

�
0 ) +

κ⊥
2
(1− rC

⊥
0 )(1− 2x− rC

⊥
0 )

�

A simple stability analysis of the total free energy show that the elastic free energies actually are

minimal for λ = 0, which corresponds to the cylinder solution discussed in the beginning. The stability

matrix Eqn.(27) is thus extended with one positive diagonal term :
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1

L





∂2
Htot
∂2x

∂2
Htot

∂x∂r
∂2

Htot
∂x∂λ

∂2
Htot

∂r∂x
∂2

Htot
∂r2

∂2
Htot

∂r∂λ

∂2
Htot

∂λ∂x
∂2

Htot
∂λ∂r

∂2
Htot
∂λ2





x̄,r̄,λ=0

=

(43)

4π

r̄3





(κ� + κ⊥)r̄
2 −(κ�x̄− κ⊥ + κ⊥x)r̄ 0

−(κ�x̄− κ⊥ + κ⊥x̄)r̄ κ�x̄
2
+ κ⊥(1− x̄)

2
+

κ
2 0

0 0
�
KA + κ+ κ�(1− x̄)

2
+ κ⊥x̄

2
�

r̄4

4





The entropy of a spiral:

The form Eqn.(42) also shows that the free energy only depends on the curvature of the spine curve,

while the torsion does not appear in the expression. Therefore, for λ �= 0 there is a degeneracy of spiral

configurations corresponding to different torsions. This deformation can e.g. be parametrized by the

length of the helix along the helical axis Lz = L
√
1− λR. The involved entropy is thus of order kBT ln(

L
a ),

where a is the fundamental ”microscopic” length scale in the problem. For finite tubes with sufficiently

small curvatures λ the curvature elastic energy of the spine curve
1
2πLr̄

�
KA + κ+ κ�(1− x̄)

2
+ κ⊥x̄

2
�
λ
2

may be smaller than the entropy, thus favouring curved, spiral configurations.
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