Phase behavior of rounded hard-squares (Supplementary Information)

Carlos Avendaño* and Fernando A. Escobedo* ${ }^{*}$

February 24, 2012

1 Simulation details and order parameters

The phase behavior of rounded-corner hard-squares (RCHS) was obtained using Monte Carlo (MC) simulations in the canonical $N V T,{ }^{1,2}$ isobaric-isothermal $N P T^{2-5}$ and isothermal-isostress $N \sigma_{P} T^{6}$ ensembles. In the $N \sigma_{P} T$ ensemble the shape of the box is allowed to change, which makes it specially attractive for simulations of systems at high-densities in order to stabilize crystalline phases that might not be commensurable with square simulation cells. Compression and expansion runs were used to map out the EoS of RCHS as a function of the roundness of the system ζ, which is defined as $\zeta=\sigma /(L+\sigma)$. The compression runs were started from a low density isotropic state, and the pressure was increased in a sequential manner. Expansion runs were started from perfect crystal structures, which were determined using the method of Filio et al. ${ }^{7}$ In our simulations, a cycle is defined as N Monte Carlo moves, where N is the total number of particles. For the systems of $N=400$ and 1600 particles, particle translations, re-orientations, and box volume changes were chosen with probabilities of $47.5 \%, 47.5 \%$, and 5%, respectively. Equal probabilities were used for isotropic and anisotropic changes of volume when required, i.e., 2.5% each. For the larger system of $N=4096$ particles, each cycle consists of 4096 particles translation or re-orientations, and approximately four box volume changes. $2.5 \times 10^{5} \mathrm{MC}$ cycles were used to equilibrate the system, followed by 1×10^{6} production cycles to obtain ensemble averages. In the case of $N V T$ simulations, translation and rotations moves were chosen with equal probability (50% each one). $N V T$ simulations were only used for systems of 5625 particles, hence longer simulations were required in order to equilibrate the system. In this case 1×10^{6} cycles were used to stabilize the system, followed by 2×10^{6} cycles to obtain ensemble averages. In all cases, the allowed displacements, re-orientations, and volume changes were adjusted to get acceptance probabilities between 30-40\% (with the exception of the results presented in Fig. S15, where the re-orientation

[^0]moves were restricted to be less than 5°). In order to characterize the system, several order parameters (that have been defined in the main article) were calculated. We also report the results for the isothermal compressibility $\kappa_{T}^{*}=\kappa_{T} k_{B} T / A_{p}$ calculated from fluctuations of the total area of the system. ${ }^{8}$

In the figures shown below, we have used the following acronyms for the different phases: I=isotropic, RHX=hexagonal rotator crystal, $\mathrm{RB}=$ rhombic, $\mathrm{T}=$ tetratic, and $\mathrm{PC}=$ polycrystalline.

2 Results for perfect hard squares using $N=196$ particles

Figure S1: Equation of state for 196 RCHS with $\zeta=0.01$ obtained by compression (\diamond) and expansion (\triangle) runs. The results are compared with the simulations results of the system of 196 perfect hard-squares reported by Wojciechowski and Frenkel ${ }^{9}$ obtained by compression (o) and expansion (\square) runs .

		$N=196$	
P^{*}	η (compression)	η (expansion)	η (reference 9)
20.0	0.8715 ± 0.0023	0.8716 ± 0.0018	0.8715
15.0	0.8365 ± 0.0033	0.8370 ± 0.0021	0.8362
12.0	0.8019 ± 0.0030	0.8020 ± 0.0024	0.8010
1.0	0.7699 ± 0.0044	0.7649 ± 0.0048	0.7689
9.0	0.7478 ± 0.0046	0.7448 ± 0.0054	0.7444
8.5	0.7251 ± 0.0066	0.7187 ± 0.0111	0.7030
8.0	0.7052 ± 0.0082	0.7002 ± 0.0063	0.6926
7.8	0.7022 ± 0.0087	0.6951 ± 0.0060	0.6857
7.6	0.6865 ± 0.0047	0.6857 ± 0.0098	0.6772
7.4	0.6781 ± 0.0042	0.6789 ± 0.0077	0.6660
7.0	0.6670 ± 0.0043	0.6643 ± 0.0073	0.6379
6.0	0.6380 ± 0.0030	0.6378 ± 0.0030	0.5725
4.0	0.5734 ± 0.0028	0.5742 ± 0.0018	0.5027
2.5	0.5008 ± 0.0021	-	

Table S1: Monte Carlo simulation results for 196 RCHS with $\zeta=0.01$ obtained by compression and expansion runs. The results are compared with the simulations results of the system of 196 perfect hard-squares reported by Wojciechowski and Frenkel. ${ }^{9}$

3 Results for RCHS with $L^{*}=0.25(\zeta=0.8)$

Figure S2: Equation of state for 400 RCHS with $L^{*}=0.25(\zeta=0.8)$ obtained by compression (left panel) and expansion (right panel) runs. (Top panel) The pressure, P^{*}, and the isothermal compressibility, κ_{T}^{*}, as a function of the packing fraction η. (Bottom panel) Bond orientational order parameters, Ψ_{4} and Ψ_{6}, orientational order parameter, Φ_{4}, and susceptibilities of the bond-order parameters, χ_{4} and χ_{6}, as a function of η. Vertical dashedlines are used to delimit the different phases.

4 Results for RCHS with $L^{*}=0.50(\zeta=0.667)$

Figure S3: Equation of state for 400 RCHS with $L^{*}=0.50(\zeta=0.667)$ obtained by compression (left panel) and expansion (right panel) runs. Legend as in Fig. S2.

Figure S4: Equation of state for 1600 RCHS with $L^{*}=0.50(\zeta=0.667)$ obtained by compression (left panel) and expansion (right panel) runs. Legend as in Fig. S2.

Figure S5: Equation of state for 4096 RCHS with $L^{*}=0.50(\zeta=0.667)$ obtained by compression (left panel) and expansion (right panel) runs. Legend as in Fig. S2.

5 Results for RCHS with $L^{*}=0.75(\zeta=0.571)$

Figure S6: Equation of state for 400 RCHS with $L^{*}=0.75(\zeta=0.571)$ obtained by compression (left panel) and expansion (right panel) runs. Legend as in Fig. S2.

Figure S7: Equation of state for 1600 RCHS with $L^{*}=0.75(\zeta=0.571)$ obtained by compression runs. Legend as in Fig. S2.

6 Results for RCHS with $L^{*}=1.00(\zeta=0.5)$

Figure S8: Equation of state for 400 RCHS with $L^{*}=1.00(\zeta=0.5)$ obtained by compression (left panel) and expansion (right panel) runs. Legend as in Fig. S2.

7 Results for RCHS with $L^{*}=1.25(\zeta=0.444)$

Figure S9: Equation of state for 400 RCHS with $L^{*}=1.25(\zeta=0.444)$ obtained by compression (left panel) and expansion (right panel) runs. Legend as in Fig. S2.

8 Results for RCHS with $L^{*}=1.50(\zeta=0.400)$

Figure S10: Equation of state for 400 RCHS with $L^{*}=1.50(\zeta=0.400)$ obtained by compression (left panel) and expansion (right panel) runs. Legend as in Fig. S2.

9 Results for RCHS with $L^{*}=1.75$

Figure S11: Equation of state for 400 RCHS with $L^{*}=1.75(\zeta=0.364)$ obtained by compression runs. Legend as in Fig. S2.

10 Results for RCHS with $L^{*}=2.00$

Figure S12: Equation of state for 400 RCHS with $L^{*}=2.00(\zeta=0.333)$ obtained by compression runs. Legend as in Fig. S2.

Figure S13: Equation of state for 4096 RCHS with $L^{*}=2.00(\zeta=0.333)$ obtained by compression (left panel) and expansion (right panel) runs. Legend as in Fig. S2.

11 Results for RCHS with $L^{*}=2.25(\zeta=0.308)$

Figure S14: Equation of state for 400 RCHS with $L^{*}=2.25(\zeta=0.308)$ obtained by compression runs. Legend as in Fig. S2.

Figure S15: Equation of state for 400 RCHS with $L^{*}=2.25(\zeta=0.308)$ obtained by compression runs. During the simulations, only re-orientations of less than 5° were allowed. The EoS for the system without restrictions during the rotational moves (S14) is shown (continuous curve) for comparison. Legend as in Fig. S2.

12 Results for RCHS with $L^{*}=2.50(\zeta=0.286)$

Figure S16: Equation of state for 400 RCHS with $L^{*}=2.50(\zeta=0.286)$ obtained by compression (left panel) and expansion (right panel) runs. Legend as in Fig. S2.

Figure S17: Equation of state for 1600 RCHS with $L^{*}=2.50(\zeta=0.286)$ obtained by compression runs. Legend as in Fig. S2.

Figure S18: Equation of state for 4096 RCHS with $L^{*}=2.50(\zeta=0.286)$ obtained by compression (left panel) and expansion (right panel) runs. Legend as in Fig. S2.

13 Results for RCHS with $L^{*}=3.00(\zeta=0.25)$

Figure S19: Equation of state for 400 RCHS with $L^{*}=3.0(\zeta=0.25)$ obtained by compression (left panel) and expansion (right panel) runs. Legend as in Fig. S2.

14 Results for RCHS with $L^{*}=5.00$

Figure S20: Equation of state for 400 RCHS with $L^{*}=5.0(\zeta=0.167)$ obtained by compression (left panel) and expansion (right panel) runs. Legend as in Fig. S2.

15 Results for RCHS with $L^{*}=10.00(\zeta=0.09)$

Figure S21: Equation of state for 400 RCHS with $L^{*}=10.0(\zeta=0.09)$ obtained by compression (left panel) and expansion (right panel) runs. Legend as in Fig. S2.

16 Results for RCHS with $L^{*}=100.00(\zeta=0.01)$

Figure S22: Equation of state for 400 RCHS with $L^{*}=100.0(\zeta=0.01)$ obtained by compression (left panel) and expansion (right panel) runs. Legend as in Fig. S2.

17 Lattice angles for the densest rhombic phase

Figure S23: Lattice angle of the densest rhombic phase as a function of $L^{*}(\zeta)$, obtained from the simulations of RCHS using the method of Filio et al. ${ }^{7}$ employing four particles.

References

[1] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, J. Chem. Phys., 1953, 21, 1087.
[2] D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, London, 2nd edn., 2002.
[3] W. W. Wood, J. Chem. Phys., 1968, 48, 415.
[4] W. W. Wood, J. Chem. Phys., 1970, 52, 729.
[5] D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, Cambridge, UK, 2nd edn., 2005.
[6] M. Parrinello and A. Rahman, J. Appl. Phys., 1981, 52, 7182.
[7] L. Filion, M. Marechal, B. van Oorschot, D. Pelt, F. Smallenburg and M. Dijkstra, Phys. Rev. Lett., 2009, 103, 188302.
[8] M. Lagache, P. Ungerer, A. Boutin and A. H. Fuchs, Phys. Chem. Chem. Phys., 2001, 3, 4333.
[9] K. W. Wojciechowski and D. Frenkel, Comp. Met. Sci. Technol., 2004, 10, 235.

[^0]: ${ }^{*}$ Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
 ${ }^{\dagger}$ E-mail: fe13@cornell.edu

