
I Dynamic simulations

Methods for “Design rules for the self-assembly of a protein crystal”

Thomas K. Haxton and Stephen Whitelam

Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

I. Dynamic simulations

We conducted virtual-move Monte Carlo (VMMC) simu-
lations [1] using the ‘symmetrized’ version of the algorithm
described in Refs. [2, 3]. This algorithm approximates over-
damped dynamics for short-range interacting particles in so-
lution by self-consistently attempting and accepting cluster
moves according to gradients of potential energy. The follow-
ing description assumes familiarity with this algorithm.

At each Monte Carlo (MC) step, we attempt a rotation
move with probability pr and a translation move with prob-
ability pt = 1 − pr. A translation move shifts a monomer’s
x and y coordinates by random displacements in the interval
(−∆t/2,∆t/2). A rotation move changes the seed monomer’s
orientation vector from û to û′ = (û+rû⊥)/|û+rû⊥|, where
r is a random number in the interval (−∆r/2,∆r/2) and û⊥
is a unit vector perpendicular to û and in the plane of the
substrate. For an isolated monomer, these moves result in
translational and rotational diffusion coefficients

Dt =
pt

24tcycle
(∆t)

2 ,

Dr =
pr

24tcycle
(∆r)

2 ,
(1)

where tcycle is the time interval assigned to each MC cycle.
We assume that the dominant source of drag is from the

three-dimensional fluid surrounding the protein, rather than
from the interaction with the two-dimensional substrate. We
take the kinematic and dynamic viscosities of the aqueous sol-
vent to be ν = 1.00 × 10−6m2/s and η = 1.00 × 10−3 Pa s,
respectively. Inertial effects are controlled by the Reynolds
number Re = av/ν, where a = 3.9 nm is the characteristic
length scale of the protein monomers and v is a characteristic
velocity. Using the thermal velocity v =

p
kBT/m, where

m = 132 kDa is the protein mass, results in Re = 0.017. Al-
ternately, balancing a characteristic drag force 6πηav with a
characteristic inter-protein force F = 100kBT/a, taking char-
acteristic interaction strengths and separations to be on the
order of 10kBT and 0.1a, respectively, results in a character-
istic velocity v = 100kBT/6πηa

2 and Re = 0.0056. In either
case, Re is small, so we neglect inertia.

In order to have a reasonably efficient simulation, we do
not calculate the fluid flow; instead, we let the drag acting
on a cluster be equivalent to the drag acting on an isolated
sphere with the same hydrodynamic radius. We define the
hydrodynamic radius of a cluster C as a generalization of the
radius of gyration [1]. For translations,

Rt
2 ≡ 〈|(r − rcom)× n̂|2〉r∈C , (2)

where rcom is the center of mass and n̂ is the direction of the
translation. For rotations,

Rr
2 ≡ 〈|(r − raxis)× ẑ|2〉r∈C , (3)

where raxis is the center of rotation and ẑ is the axis of ro-
tation, perpendicular to the substrate. We take r ∈ C to
include all points within the hard cores of the monomers.
The radius of gyration of a (real) monomer depends not only
on its two-dimensional footprint on the substrate, but also
on its height. We take the height of a monomer to be equal
to its width. Since the hydrodynamic radii of a sphere are

Rt
2 = Rr

2 = 2R2/5, the Stokes solutions for the drag on a
sphere are

D?
t (Rt) =

kBT

6πη
p

5/2Rt

,

D?
r (Rr) =

kBT

8πη(5/2)3/2Rr
3 .

(4)

We parameterize the algorithm to yield Eq. (4) for isolated,
strongly-bound clusters with hydrodynamic radii Rt and Rr.
We can enforce Eq. (4) a priori if we assume that the trial step
sizes ∆t and ∆r are large compared to the size of the bonds, so
that individual moves are always suppressed and only whole-
cluster moves are accepted. We will consider realistic cases
where single-monomer relaxations are allowed shortly. First,
we ensure that clusters with the smallest possible radii of
gyration satisfy Eq. (4). For rotations, the smallest possible
radius of gyration is that of a monomer, Rr

0 = 0.698a. For
translations, the radius of gyration of a monomer depends on
the direction of translation. Drag is least for translation along
the long axis, for which Rt

0 = 0.408a. Plugging these minimal
radii of gyration into Eqs. 1 and 4 constrains the relative
frequency of translation and rotation moves according to

pr

pt
= 0.361

„
∆t

a∆r

«2

. (5)

We will choose appropriate trial step sizes shortly.
Next, we ensure that larger clusters also obey Eq. (4). Since

we have already constrained the diffusion coefficients of the
smallest possible clusters, it is sufficient to require

Dt(Rt)

Dt(Rt
0)

=
Rt

0

Rt
,

Dr(Rr)

Dr(Rr
0)

=

„
Rr

0

Rr

«3

.

(6)

We enforce Eq. (6) by employing cutoffs that depend on the
hydrodynamic radii, in addition to the usual particle number-
dependent cutoff of the VMMC algorithm [1]. Before each
attempted translation or rotation, we draw two random num-
bers, q and x, from the interval (0, 1). As we build a cluster
according the the VMMC algorithm, we reject the move in
situ if the hydrodynamic radius R exceeds R0q

−ν or the num-
ber of monomers in the cluster Nc exceeds 1/x. According to
this scheme, the diffusion coefficient per MC cycle is

D(Nc, R) = NcD(1, R0)

„
R

R0

«−1/ν
1

Nc
, (7)

where D(1, R0) is the diffusion coefficient of a single monomer
with radius of gyration R0. The prefactor Nc is the average
number of times the cluster is selected for a trial move per
MC cycle, once per monomer in the cluster. Choosing ν = 1
for translations and ν = 1/3 for rotations reduces Eq. (7) to
the desired form of Eq. (6).

In practice, we aim both to produce the correct diffusion
coefficients of Eq. (4) and to allow local relaxation within
clusters. This requires optimizing the trial step sizes ∆t and
∆r. To do so, we performed VMMC simulations to mea-
sure the diffusion coefficients of isolated, compact clusters of
size 1 to 256 bound by permanent specific bonds. For ∆t

and ∆r much smaller than the specific bond range s = 0.1a,
single-monomer trial moves rarely change the potential en-
ergy and are almost always accepted, leading to the incorrect
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FIG. 1 Ratio of diffusion coefficients D(R) to D?(R), the
solution of Eq. (4), for rotations and translations of clusters
of 1, 4, 16, and 64 monomers, where R is the average
measured radius of gyration.

free-draining diffusion scalings of single-particle MC or Brow-
nian dynamics, Dt ∝ Rt

−2 and Dr ∝ Rr
−4. For ∆t and

∆r much larger than s, the algorithm efficiently rejects trial
moves of incomplete clusters and proposes cluster moves of
the entire cluster with a probability determined by the cut-
offs for the radii of gyration. While this yields the correct
diffusion scaling, it suppresses internal relaxation. In order to
produce the correct diffusion scaling while allowing local re-
arrangements, we choose the smallest step sizes that produce
the correct diffusion coefficients up to an accuracy of about
10%. We find these to be ∆t = 0.8a and ∆r = 0.5. With
these choices, single-monomer moves account for the major-
ity of accepted moves, but whole-cluster moves dominate the
long-time diffusive motion.

Fig. 1 shows that the choices ∆t = 0.8a and ∆r = 0.5
yield the correct diffusion coefficients of Eq. (4). Notice in
Fig. 1 that single monomers have a translational diffusion co-
efficient greater than predicted by Eq. (4) because of their
anisotropic shape: diffusion occurs preferentially along the
long axis, for which the hydrodynamic radius is smaller, but
the average hydrodynamic radius appearing in Eq. (4) sam-
ples all directions equally. The translational diffusion coeffi-
cients of the larger, more compact clusters, as well as all of the
rotational diffusion coefficients, lie near the Stokes solution,
Eq. 4. The free-draining solutions for both translational and
rotational diffusion fall off as 1/R relative to the Stokes so-
lution. Fig. 1 demonstrates that this parameterization of the
virtual-move algorithm can much more closely approximate
Stokes flow than can free-draining motion. The latter is gen-
erated by simple implementations of Brownian dynamics, and
by single-particle MC algorithms in the limit of vanishing step
size. This difference is potentially significant: Fig. 1 reveals
that for clusters of even modest size (e.g. ∼ 60 particles),
the free-draining diffusion constant is an order of magnitude
smaller than the Stokes one.

Applying Eq. (5), our choices of ∆t and ∆r yield attempt
frequencies pt = 0.520 and pr = 0.480. Combining Eq. (1)
and (4) for a monomer with R0 = 0.408a yields a time per
MC cycle of

tcycle =

r
5

2

πηpt∆t
2R0

4kBT
= 2.42 ns. (8)

We used dynamic simulations to calculate the scaled yield
and to generate pathway diagrams shown in Fig. 4 of the main
text. Letting f2 and f3 be the fraction of monomers with two
and three satisfied specific bonds, respectively, we define the
scaled yield as in Ref. [4] by f̂3 ≡ f3(f3/(f3 +f2))2, rewarding
crystalline clusters with large bulk-to-surface ratios. In the
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FIG. 2 Fraction of monomers in various configurations vs
time for (a) φ = 0.1, εn = 1, εs = 10 and (b)
φ = 0.1, εn = 1, εs = 5, demonstrating the difference between
a ‘misbound’ pathway and a direct pathway. ‘Square lattice’
denotes monomers with all three specific bonds, and
‘misbound’ denotes monomers with their external specific
bond satisfied but only one of their two internal specific
bonds satisfied.

color maps of yield in the main text, we report the scaled
yield after an arbitrary choice of 107 MC cycles, or 24.2 ms.
We find that the qualitative behavior is insensitive to this
choice. We constructed pathway diagrams by recording the
maximum fraction of monomers in various configurations over
the course of assembly. Fig. 2 shows time traces of these
fractions for two examples corresponding to points in Figs.
3 and 4 of the main text. Panel (a) shows a pathway that
proceeds via misbound configurations, while panel (b) shows
a pathway that proceeds directly.

II. Equilibrium simulations

We numerically calculated fluid-solid coexistence packing
fractions φfluid and φsolid by conducting direct coexistence
Monte Carlo simulations at fixed T , N , and total area A. We
initialized each periodic simulation box with an aspect ratio
4 : 1 and a crystal slab spanning the short axis of the box. We
allowed the aspect ratio to fluctuate to let the system adopt its
equilibrium lattice spacing. We used a mixture of moves, each
obeying detailed balance, to facilitate efficient equilibration.
We used non-local aggregation-volume bias [5] and teleporta-
tion [4] moves to facilitate exchange between solid and fluid
phases. We used 180 degree rotations of single monomers to
facilitate sampling of specific bonds and rigid 90 turn moves
of two adjacent, parallel monomers to facilitate conversion
among close-packed crystal phases. We also used rigid rota-
tions and translations of bound dimers and tetramers. We
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FIG. 3 Sketches of the four crystal phases.

chose appropriate probabilities for each move type depending
on the interaction strengths (e.g. more nonlocal moves for
systems with strong bonds), with the remaining probability
split between single-particle translations and rotations.

We considered the four crystal phases sketched in Fig. 3.
Depending on the values of εint, εext, and εn, we performed one
or more simulations starting with slabs of square lattice, rect-
angular, close-packed tetramer, or close-packed dimer crys-
tals. While we did not attempt to accurately measure solid-
solid equilibria with simulations, we only found narrow re-
gions of interaction space over which two crystal phases are
stable, and these regions are consistent with the solid-solid
phase boundaries calculated analytically with mean-field the-
ory (see next section).

We numerically calculated liquid-vapor coexistence pack-
ing fractions φliquid and φvapor by performing Gibbs ensem-
ble simulations [6], using combinations of the same local and
nonlocal moves. At intermediate values of εn and low val-
ues of εint and εext, we find coexisting liquid-vapor mixtures
in which each phase consists mostly of unbound monomers.
These packing fractions define a stable liquid-vapor binodal,
as shown e.g. for protein 1 in Fig. 1(b) of the main text. We
determine the liquid-vapor critical point {φc, Tc} by conduct-
ing least-squares fits to the functions

(φliquid − φgas)
8 = c1(Tc − T ) (9)

and
1

2
(φliquid + φgas) = φc + c2(Tc − T ), (10)

where c1 and c2 are constants. Eq. 9 is the expected form for
systems in the two-dimensional Ising universality class, and
Eq. 10 is the empirical law of rectilinear diameter. As εint and
εext increase, the binodal is subsumed by the solubility curve

and becomes metastable. While crystallization sets in too
rapidly for us to measure the metastable binodal directly, we
estimate the location of the metastable liquid-vapor critical
point for proteins 2 (εint/εn = 1.5) and 3 (εint/εn = 2) in Fig.
1 of the main text by linear extrapolation along εext/εint = 2
from their locations at εint/εn = 0 and 1. We find a weak
dependence on the specific interaction strength,

Tc = 0.431 + 0.013εint/εn,
φc = 0.284 + 0.002εint/εn.

(11)

In addition to the monomer liquid, at intermediate values of
εn, low values of εint, and high values of εext, we find coexisting
liquid-vapor mixtures in which each phase consists mostly of
bound dimers. For example, in Fig. 2 of the main text, the
upper-left corner of the phase diagram corresponds to a dimer
gas coexisting with a dimer liquid. We find no parameters
for which a liquid of tetramers is stable, due to the smaller
relative interaction range for tetramers.

III. Mean-field theory

We used analytic mean-field theory to calculate stable and
metastable solid-fluid and solid-solid phase boundaries, ther-
modynamic driving forces for assembly, and second virial co-
efficients. For the solid-vapor phase boundaries, we find ex-
cellent agreement between the mean field theory and the nu-
merically calculated solubility curves, as shown in Fig. 1 of
the main text. The solid-solid phase boundaries run through
the narrow regions of parameter space in which both solids
are stable on the timescale of the direct coexistence simula-
tions. We do not attempt to account for liquid phases in the
mean-field theory; we identify regions of liquid stability using
Gibbs ensemble simulations.

We calculated the canonical partition function Z ≡ ZidealQ
and the associated dimensionless Helmholtz free energy den-
sity F ≡ − ln(Q)/N for homogeneous gas phases composed
of each of the four oligomers sketched in Fig. 4 and coexisting
combinations of the four gas phases and four crystal phases
sketched in Fig. 3. For the homogeneous monomer gas,

Qmonomer =

„
1

2πA

«N Z
(dr)N (dθ)N

Y
i<j

(1 + fij), (12)

where fij ≡ exp(−Uij/kBT ) − 1 is the Mayer f-function and
Uij is the potential energy between monomers i and j. Em-
ploying a cluster expansion [7, 8] we find

Fmonomer =
Bmonomer

2

la2
φ+O(φ2), (13)

where

Bmonomer
2 = − 1

4π

Z
dr12dθ12f

monomer
12 (14)

is the second virial coefficent. The full solution for the second
virial coefficient is

monomer dimer trimer tetramer

FIG. 4 Sketches of the four oligomers.
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Bfull
2 =

1

4π

`
νh − (eεn − 1)(νn − 2νint − νext)− 2(eεn+εint − 1)νint − (eεn+εext − 1)νext

´
, (15)

where νh is the configurational volume excluded by the hard
cores, νn is the configurational volume within the nonspecific
interaction range, and νint and νext are the configurational
volumes within the specific interaction ranges. We define the
reduced second virial coefficient (reported on plots in the main
text) as

B?2 = Bfull
2 /Bhard core

2 , (16)

where
Bhard core

2 =
νh

4π
(17)

is the hard-core part. However, since we define the monomer
gas phase as the phase containing negligible specific bonds, we
neglect the specific interactions in calculating the monomer
gas free energy. Thus, we use a restricted version of the second
virial coefficient,

Bmonomer
2 =

1

4π
(νh − (eεn − 1)νn) . (18)

In computing the solubility curves and the thermodynamic
driving forces for Fig. 1 of the main text, we cut off

the solution to Eq. 14 at 2Bmonomer
2 φ/la2 = −1. For

2Bmonomer
2 φ/la2 < −1 we expect higher-order terms in the

cluster expansion to be significant.
Defining an oligomer gas phase as a gas satisfying all spe-

cific bonds commensurate with the oligomer, we separate the
inter- and intra-oligomer degrees of freedom for each n-mer
gas to obtain

Qoligomer =
N !

M !n!

„
νoligomerφ

2πNla2

«M(n−1)

eNεoligomerQcom, (19)

where M = N/n, (νoligomer)
n−1 is the configurational volume

per oligomer given a fixed center of mass and global orienta-
tion, −εoligomerkBT is the energy per monomer, and

Qcom =

„
1

2πA

«M Z
(drcom)M (dθ)M

Y
i<j

(1 + fcom
ij ) (20)

is the configurational integral for the center-of-mass degrees
of freedom. Performing a cluster expansion, we obtain

Foligomer = 1− ln(n) + 1

n
+
n− 1

n
ln

„
2πla2

νoligomerφ

«
− εoligomer +

Bcom
2

la2
φ+O(φ2), (21)

where

Bcom
2 ≡ − 1

4nπ

Z
dr12dθ12f

com
12 . (22)

To calculate Bcom
2 , we neglect specific bonds external to the

oligomers and fix the internal degrees of freedom in their
mean-field coordinates. The solutions are

Bdimer
2 =

1

8π
(νh,dimer − (eεn − 1)νn,dimer) ,

Btetramer
2 =

1

16π
(νh,tetramer − (eεn − 1)νn,tetramer) ,

Btrimer
2 =

1

12π
(νh,trimer − (eεn − 1)νn,trimer) ,

(23)

where νh,dimer, νh,tetramer, and νh,trimer are the configurational
volumes excluded by the hard cores and νn,dimer, νn,tetramer,
and νn,trimer are the configurational volumes of overlapping
nonspecific interaction ranges.

For crystal phases coexisting with gas phases, we separate
the crystal and gas degrees of freedom in the canonical parti-
tion function to write

Zco(N,φ) = Zcrystal(Ncrystal, φcrystal)Zgas(Ngas, φgas). (24)

We calculate Z(Ncrystal) using the cell method [9] that ap-
proximates

Zcrystal(Ncrystal, φcrystal) = Z1(φcrystal)
Ncrystal , (25)

where Z1 is the partition function of a single monomer with
neighboring monomers fixed at their mean-field coordinates.
With some algebraic simplifications we obtain

Fco(Ngas, φgas) =

„
1− Ngas

N

«„
1 + ln

„
2πla2

νcrystalφ

«
− εcrystal

«
+
Ngas

N

„
Foligomer(φgas)− ln

„
φ

φgas

««
, (26)

where νcrystal is the configurational volume available to a monomer given the fixed coordinates of its neighbors. For φcrystal >> φ
and φcrystal >> φgas, we use Ngas/N ≈ φgas/φ. Using this approximation and combining Eq. (21) and (26) yields

Fco(φgas) =

„
1− φgas

φ

«
Fcrystal +

φgas

φ

„
Folig,0 +

1

la2
Bolig

2 φgas +
1

n
ln(φgas)

«
, (27)

where

Fcrystal ≡ 1 + ln

„
2πla2

νcrystalφ

«
− εcrystal (28)

and

Folig,0 = 1− ln(n) + 1

n
+
n− 1

n
ln

„
2πla2

νolig

«
− ln(φ)− εolig. (29)
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Equation 27 must be minimized with respect to φgas to determine φgas, the packing fraction (solubility concentration) of the
gas phase. The solution for φgas is

φmin
gas =

la2

2nBolig
2

W (x), (30)

where W is the Lambert W-function and

x ≡ 2nBolig
2

la2
en(Fcrystal−Folig,0)−1. (31)

Notice that the dependence on φ cancels in Fcrystal − Folig,0 so that φmin
gas is independent of φ. At large interaction strength x

is small, and using W (x) = x+O(x2) we obtain an algebraic expression for the solubility packing fraction:

φmin
gas = exp

„
n

„
ln

„
2πla2

νcrystal

«
− εcrystal +

ln(n) + 1

n
− n− 1

n
ln

„
2πla2

νolig

«
+ εolig

«
− 1

«
(32)

For a monomer gas, this simplifies to

φmin
gas =

„
2πla2

νcrystal

«
e−εcrystal . (33)

In addition to finding phase coexistence boundaries, we use the mean-field theory to determine free energy differences. In
particular, we calculate F , the thermodynamic driving force for assembly. Since the formation of small oligomers is a much
faster process than crystallization, we define F as the difference in free energy between the most stable stable homogeneous
fluid phase (from Eq. 21) and the most stable square lattice phase (from Eq. 27).

Finally, we calculate the supersaturation at a given thermodynamic driving force by setting

F = Foligomer −Fco(φgas), (34)

using Foligomer from Eq. 21 and Fco from Eq. 27. If both the homogeneous and coexisting systems contain a monomer gas,
rather than an oligomer gas, this results in the particularly simple expression

F =
Bmonomer

2 φgas

la2

„
φ

φgas
− φgas

φ

«
− 1 +

φgas

φ
− ln

„
φgas

φ

«
. (35)

Using the low-temperature expression Eq. 33, we obtain

F =
2πBmonomer

2

νcrystal
e−εcrystal

„
φ

φgas
− φgas

φ

«
− 1 +

φgas

φ
− ln

„
φgas

φ

«
. (36)

For large values of εcrystal (low temperatures), we may neglect
the first term, resulting in a concentration- and temperature-
independent expression for the supersaturation S,

S ≡ φ

φgas
=

−1

W (− exp(−1−F))
, (37)

where, again, W is the Lambert W-function. For large values
of F , this approximates to

S = e1+F − 1 +O

„“
e−1−F

”2
«
. (38)

Thermodynamic driving forces of 1, 2, and 3 correspond to su-
persaturations of 6.3, 19.1, and 53.6. We can therefore trans-
form our rule of thumb for good assembly, F = 1 − 2 kBT ,
into a rule of thumb for the supersaturation, S = 5 − 20.
We stress that the conversion between thermodynamic driv-
ing force and supersaturation is independent of concentration
and temperature, as long as the temperature is low enough so
that the first term in Eq. 37 may be neglected. We therefore
expect that a similar window of optimal supersaturation may
exist for real protein systems, though the precise value of the
window will depend on the optimal values of F .

To determine the numerical values of the phase bound-
aries, reduced second virial coefficients, and free energy dif-
ferences, we must calculate the configurational volumes in
the theory. We calculate the configurational volumes νh, νn,
νh,dimer, νn,dimer, νh,tetramer, and νn,tetramer by determining
the excluded area at fixed relative orientation θ, as depicted
in Fig. 5, and then integrating over θ using Mathematica [10].
We assume that bound monomers are oriented either perpen-
dicular or parallel and are separated by a distance 0.1a equal
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FIG. 5 Examples of areas excluded by the hard cores at
arbitrary relative orientation θ: (a) monomers, (b)
tetramers, (c) dimers at small θ, and (d) dimers at θ near
π/2.
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FIG. 6 Sketches of mean-field configurations and spacings
used to calculate the crystal configurational volumes: (a)
rectangular crystal, (b) square lattice, (c) close-packed
tetramer crystal, and (d) close-packed dimer crystal.

to one-half the specific interaction range. We obtain

νhard = 73.886a2, νn = 45.296a2,
νhard,dimer = 162.093a2, νn,dimer = 66.386a2,
νhard,tetramer = 343.416a2, νn,tetramer = 99.745a2.

(39)

Because of the low symmetry of the trimer, the configura-
tional integrals are much more complicated, so we do not
solve them. Instead, we estimate νh,trimer = (νh,tetramer +
νh,dimer)/2 and νn,trimer = (νn,tetramer − νn,dimer)/2. This in-
troduces only a small error to the free energy, because the
configurational volumes only contribute logarithmically to the
free energy.

We determine the configurational volumes νint, νext, νdimer,
(νtetramer)

3, and (νtrimer)
2 by integrated over configurations

satisfying both the hard-core and the specific interaction con-
straints. The integrals for νint, νext, νdimer, and νtrimer, are
identical, so νint = νext = νdimer = νtrimer. We solve the re-
maining integrals by numerical integration on a regular grid.
We obtain

νdimer = 0.02157a2,
νtetramer = 0.0118a2.

(40)

To solve the crystal configurational volumes νrectangular,
νsquare, νcpd, and νcpt, we fix the mean-field orientations
of neighboring monomers at right angles and constrain the
bound specific interaction patches to line up. Then, we cal-
culate the configurational volume available to the one freely
moving monomer as a function of one or more inter-monomer
spacings, and we maximize the volume with respect to the
spacing(s). We calculate the volumes subject to the constraint
that the energy is the maximum energy characteristic of the
crystal, and we used a combination of analytic and numeric
techniques in Mathematica [10] to perform the calculations.

We sketch the mean-field configurations in Fig. 6. For the
rectangular crystal (panel (a)), we assume that the mean-field
spacing h between monomers is the same along the long and
short directions. We obtain a mean-field spacing h = 0.1932a
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FIG. 7 Phase diagram for φ = 0.1 as a function of
nonspecific interaction εn and specific interaction εs for
εs ≡ εint = 2εext. Solid (dashed) grey curves denote the
stable (metastable) boundaries for the labeled simulated
coexistence combinations. All boundaries were calculated
using analytic theory, except for the boundary between
homogeneous and phase-separated monomer fluids; this was
determined using Gibbs ensemble simulations. The
surrounding simulation snapshots label the equilibrium
phase or coexisting phases within each region of the phase
diagram.

and configurational volume νrectangular = 0.04085a2. For the
square lattice (panel (b)), lining up the specific patches con-
strains the spacing between nonspecifically bound, perpen-
dicular monomers to be (l − 2)a = 0.2a. Symmetry and the
previously described constraints dictate that the spacings be-
tween internally bound and externally bound monomers are
the same. We obtain a mean-field spacing h = 0.10a and
a configurational volume νsquare = 0.00500. For the close-
packed tetramer crystal (panel (c)), symmetry dictates that
the mean-field spacing between monomers that share a long
edge should be (l− 2)a = 0.2a. We obtain a spacing between
perpendicularly oriented monomers h = 0.10a and a config-
urational volume νcpt = 0.00892. For the close-packed dimer
crystal (panel (d)), we assume that the mean-field separa-
tions constrained by the nonspecific interaction–that is, the
separation along the short edge and the separation along the
long edge with no patchy interactions–are the same, but that
the mean-field separation constrained by the patchy interac-
tion is different. We obtain a nonspecifically bound spacing
hn = 0.19, a specifically-bound spacing hs = 0.18, and a con-
figurational volume νcpd = 0.0138.

In the main text, we present results for a single choice of
the ratio between external and internal interaction strength,
εext/εint = 2. However, if we allow both specific interaction
strengths εint and εext to vary separately, we find a total of
11 stable phase combinations: homogenous fluid phases of
monomers, dimer, and tetramers; the square lattice coexisting
with the monomer, dimer, and tetramer gases; the rectangu-
lar crystal coexisting with the monomer gas; the close-packed
tetramer crystal coexisting with the monomer and tetramer
gases; and the close-packed dimer crystal coexisting with the
monomer and dimer gases. In addition, as mentioned in the
previous section, Gibbs ensemble simulations reveal two ad-
ditional phase combinations, a liquid of monomers coexisting
with the monomer gas and a liquid of dimers coexisting with
the dimer gas. We find that phases involving a gas of trimers
are never stable.

Along the slice of parameter space discussed in the main
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III Mean-field theory

text, εext/εint = 2, we find the 6 stable phase combinations
labeled in Fig. 7 and appearing in the analogous phase di-
agram in Fig. 3 of the main text. Notice that in addition
to the monomer gas, the monomer liquid, the square lattice,
and the rectangular crystal discussed in the main text, we
also find phase combinations involving a dimer gas at low εn.
If we decrease εext/εint, the dimer gas disappears from the
phase diagram, but the dependence of the yield and pathway

on εn and εint does not qualitatively change. We find that our
design rules persist as we vary εext/εint. As we will discuss
in a subsequent publication, the detrimental effects of non-
specific aggregation are exacerbated when εext/εint departs
substantially from 2, and the window of moderate thermody-
namic driving force remains a necessary condition for efficient
crystallization.
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