Supplementary information for "Ring formation by competition between entropic effect and thermophoresis"

We derive eq. (8) from a lattice model following ref. [11]. We consider random walk of a tracer (colloid) under the presence of other particles (polymers). Both the tracer and the other particles perform random walks on a *d*-dimensional regular lattice in which double occupancy of the lattice sites is not allowed. We denote the vector characterizing a jump to the nearest neighbor site j by \vec{b}_j ($j = 1, 2, \dots, 2d$) and the jump length by b. The probability at time t that the site \vec{r} occupied by a tracer, $c(\vec{r}, t)$, obeys,

$$\frac{\partial}{\partial t}c(\vec{r},t) = \sum_{j} \left[\gamma_B \left(\vec{r} + \vec{b}_j \right) P \left(\vec{r} + \vec{b}_j \bullet, \vec{r}\phi, t \right) - \gamma_B \left(\vec{r} \right) P \left(\vec{r} \bullet, \vec{r} + \vec{b}_j \phi, t \right) \right], \quad (a)$$

where $\gamma_B(\vec{r})$ denotes the transition probability and $P\left(\vec{r}\bullet, \vec{r'}\phi, t\right)$ denotes the joint probability at time t that the site \vec{r} is occupied by a tracer and the site $\vec{r'}$ is empty. $P\left(\vec{r}\bullet, \vec{r'}\phi, t\right)$ can be rewritten as,

$$P\left(\vec{r}\bullet, \vec{r'}\phi, t\right) = c(\vec{r}, t) - P\left(\vec{r}\bullet, \vec{r'}\circ, t\right),$$
 (b)

where $P\left(\vec{r}\bullet, \vec{r'}\circ, t\right)$ denotes the joint probability at time t that the site \vec{r} is occupied by a tracer and the site $\vec{r'}$ is occupied by another particle. By substituting eq. (b), eq. (a) can be expressed as

$$\frac{\partial}{\partial t}c\left(\vec{r},t\right) = \sum_{j} \left[\gamma_{B}\left(\vec{r}+\vec{b}_{j}\right)\left(c\left(\vec{r}+\vec{b}_{j},t\right)-P\left(\vec{r}+\vec{b}_{j}\bullet,\vec{r}\circ,t\right)\right)-\gamma_{B}\left(\vec{r}\right)\left(c\left(\vec{r},t\right)-P\left(\vec{r}\bullet,\vec{r}+\vec{b}_{j}\circ,t\right)\right)\right].$$
(c)

We denote the occupation probability by other particles by $p(\vec{r}, t)$ and consider the case that the joint probability function can be expressed as,

$$P\left(\vec{r}\bullet, \vec{r'}\circ, t\right) = c\left(\vec{r}, t\right) p\left(\vec{r'}, t\right) \sigma(\vec{r} - \vec{r'}), \tag{d}$$

where the spatial correlation is taken into account by $\sigma(\vec{r} - \vec{r'})$. By ignoring the spatial variation of $\sigma(\vec{r'})$ in the limit of small lattice spacing and introducing definition

given by $\sigma(0) = \lim_{b\to 0} (\vec{b}_j)$, we obtain,

$$\sum_{j} \gamma_B \left(\vec{r} + \vec{b}_j \right) P \left(\vec{r} + \vec{b}_j \bullet, \vec{r} \circ, t \right) = \left[\gamma_B \left(\vec{r} \right) c \left(\vec{r}, t \right) p \left(\vec{r}, t \right) + b^2 p \left(\vec{r}, t \right) \nabla^2 \gamma_B \left(\vec{r} \right) c \left(\vec{r}, t \right) \right] \sigma(0)$$
(e)

$$\sum_{j} P\left(\vec{r}\bullet, \vec{r} + \vec{b}_{j}\circ, t\right) = \left[c\left(\vec{r}, t\right) p\left(\vec{r}, t\right) + b^{2}c\left(\vec{r}, t\right) \nabla^{2} p\left(\vec{r}, t\right)\right] \sigma(0).$$
(f)

When $\gamma_B(\vec{r})$ depends on \vec{r} through the spatial variation of temperature, the Soret coefficient can be introduced by

$$S_T^c = \left(\frac{\partial \gamma_B}{\partial T}\right) / \gamma_B. \tag{g}$$

We substitute eqs. (e)-(f) into eq. (c). It is convenient to represent $b^2 p(\vec{r}, t) \nabla^2 \gamma_B(\vec{r}) c(\vec{r}, t)$ in terms of $\vec{\nabla} \cdot b^2 p(\vec{r}, t) \vec{\nabla} \gamma_B(\vec{r}) c(\vec{r}, t)$ and $b^2 c(\vec{r}, t) \nabla^2 p(\vec{r}, t)$ in terms of $\vec{\nabla} \cdot b^2 c(\vec{r}, t) \vec{\nabla} p(\vec{r}, t)$. By further ignoring the spatial dependence in S_T^c , eq. (c) in the limit of $b \to 0$ becomes,

$$\frac{\partial}{\partial t}c\left(\vec{r},t\right) = \vec{\nabla} \cdot D_B^c \left[\left(1 - \sigma(0)p\right) \left(cS_T^c \vec{\nabla}T + \vec{\nabla}c\right) + \sigma(0)c\vec{\nabla}p \right],\tag{h}$$

where $D_B^c = b^2 \gamma_B$. In the mean field approximation in which $\sigma(0) = 1$, eq. (h) reduces to eq. (8),

$$\frac{\partial}{\partial t}c\left(\vec{r},t\right) = \vec{\nabla} \cdot D_B^c \left[(1-p)\left(cS_T^c \vec{\nabla}T + \vec{\nabla}c\right) + c\vec{\nabla}p \right].$$
 (i)

The factor 1 - p originates from the vacant probability of a neighboring site in the mean-field approximation. $D_B^c(1-p)$ represents the tracer diffusion coefficient.

Finally, we would like to add a remark about one component system, where the jump rate of a tracer particle is the same as that of other particles. If we do not distinguish a tracer from other particles, we can set $c(\vec{r},t) = p(\vec{r},t)$. In this case we obtain,

$$\frac{\partial}{\partial t}p\left(\vec{r},t\right) = \vec{\nabla} \cdot D_B^c \left[(1-p)pS_T^c \vec{\nabla}T + \vec{\nabla}p \right],\tag{j}$$

where $p(\vec{r}, t)$ is the concentration of Brownian particles including a tracer. In eq. (j) the diffusion coefficient is given by the collective diffusion coefficient D_B^c . Equation (j) reduces to that in ref. [1] of the Supplementary information.

References

 H. Jung, V. E. Gusev, H. Baek, Y. Wang, G. J. Diebold, Physics Letters A 375, 1917 (2011).