Electronic supplementary information

Proteins grouped into a variety of regular micro-patterns by substrate-guided domains

of self-assembling poly(ethylene oxide)/ polystyrene blends

Joanna Zemła, Jakub Rysz^{*}, Andrzej Budkowski, Kamil Awsiuk

M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

Soft Matter, (2012), DOI: 10.1039/c2sm25146a

Figure S1. SIMS mass spectra of different polymers (PS, PEO and PEO admixed with PETA) providing characteristic ions for further identification of blend components: C_2OH^- ions, m/z = 41 for PEO and C_6H^- ions, m/z = 73 for PS.

Corresponding author: E-mail: jakub.rysz@uj.edu.pl,

Figure S2 Depth SIMS profiles across the interface between the top PEO-rich and bottom PS-rich lamellae recorded for the PEO/PS 1:1 blend film spin-cast from chloroform onto a SAM-covered Au surface with coating speed $\omega = 2k$ rpm. SIMS profiles correspond to PEO composition (C₂OH⁻ ions, m/z = 41, open circles, right scale), PS concentration (C₆H⁻ ions, m/z = 73, solid circles, left scale). Sputtering time reflects the distance from the original film surface (sputtering for oxygen-containing polymers is faster than for PS [81]).

Figure S3. Topography (a) and amplitude (b) AFM images of PEO/PS film blend 1:2 spin-cast from chloroform onto a SAM-covered Au surface with the coating speed $\omega = 4k$ rpm.