Electronic Supplementary Information

Morphological transformation between three-dimensional gel network and spherical vesicles via sonication

Mingming Zhang, Luyan Meng, Xinhua Cao, Meijuan Jiang, Tao Yi*

Department of Chemistry & Laboratory of Advanced Materials, Fudan University 220 Handan Road, Shanghai 200433, China Email: yitao@fudan.edu.cn

Experimental details

Synthetic methods and characterizations:

Scheme S1 Synthesis of compound 1

Compound 2 was synthesized according to our previous report [1]

Preparation of compound 3

Trifluoroacetic acid (TFA, 8.2 mL) was added to a solution of **2** (2 g, 6 mmol) in CH_2Cl_2 (9.6 mL). The reaction mixture was stirred at room temperature for 2 h, and the solvent was evaporated in vacuum at 40°C. CH_2Cl_2 (3 mL), TEA (3 mL, 22 mmol) and Boc- β -Ala Osu (1.72 g, 6 mmol) were added. The reaction mixture was stirred overnight at room temperature and then evaporated to dryness. The solid was purified by column chromatography

(SiO₂, ethyl acetate/ petroleum ether = 1: 1) to give **3** as a white solid (2.1 g, 86%). Mp 183-186°C. ¹H NMR (400 MHz, CDCl₃) δ 6.56 (s, 1H), 5.35 (s, 1H), 5.23 (s, 1H) 3.49-3.45 (m, 2H), 3.40-3.36 (m, 2H), 2.37-2.34 (t, *J* = 6.0 Hz, 2H), 2.32-2.29 (t, *J* = 6.0 Hz, 2H), 2.06 (s, 3H), 1.97 (s, 6H), 1.66 (s, 6H), 1.42 (s, 9H).

Preparation of compound 1

Trifluoroacetic acid (TFA, 2.3 mL) was added to a solution of **3** (0.68 g, 1.73 mmol) in CH₂Cl₂ (2.7 mL). The reaction mixture was stirred at room temperature for 2 h, and the solvent was evaporated in vacuum at 40°C. CH₂Cl₂ (15 mL) was added and the solution was neutralized with TEA to pH 7–8. Then, a dichloromethane solution (10 mL) of cholesteryl chloroformate (0.78 g, 1.73 mmol) was added drop wise over 1.5 h at 0°C. The mixture was stirred for 12 h at room temperature and evaporated to dryness. The solid was purified by column chromatography (SiO₂, ethyl acetate) to give **1** as a white solid (0.8 g, 66%). Mp 220-223°C, ¹H NMR (400 MHz, CDCl₃) δ 6.50 (s, 1H), 5.36 (s, 1H), 5.30 (s, 2H), 4.47 (m, 1H), 3.49 (m, 2H), 3.44 (m, 2H), 2.38 (m, 2H), 2.33 (m, 2H), 2.08 (s, 3H), 1.98 (m, 6H), 1.85 (m, 4H), 1.68 (m, 6H), 1.66 – 0.85 (m, 33H), 0.67(s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 171.7, 170.7, 156.2, 139.9, 125.6, 122.43, 77.3, 77.0, 76.8, 74.9, 74.3, 56.7, 56.2, 50.0, 42.4, 41.7, 39.8, 39.5, 38.6, 37.0, 36.3, 36.2, 35.8, 35.6, 31.93, 29.4, 28.2, 28.0, 24.3, 23.9, 22.8, 22.6, 21.0, 19.3, 18.7, 11.9; HR-Ms calculated for C₄₄H₇₁N₃NaO₄ [M+Na]⁺: 728.5342; found: 728.5325.

Solvent	State (T-gel/ S-gel) ^a	$T_{\rm g}$ /°C (T-gel/ S-gel)	Stable Period
petroleum ether	Ι		
methylene chloride	S		
ethanol	G (37.5/14.2)	50.0/ 40.0	>1 month
ethyl acetate	Р		
dioxane	Р		
acetone	Ι		
acetonitride	Ι		
methanol	Р	83.0/ 80.0	>1 month
water	Ι		
1-hexanol	S		
1-pentanol	S		
chloroform	S		
$\mathrm{DMF}^{\mathrm{b}}$	G (50)	53.0	>1 month
THF	Ι		
DMSO ^b	G (50)	69.0	>1 month
isopropanol ^b	G (50)	72.0	>1 month
cyclohexane	Ι		

Table S1 Gelation property of compound 1

^aState: G = gel; P = Precipitation; S = Solution; I = Insoluble. The critical gelation concentrations of T-gel/ S-gel were included in the parentheses (wt%). T_g : gel to sol transition temperature. ^b T-gel only.

Fig. S1 SEM images of 1 from ethanol after a heating-cooling process at a concentration of (a) 10 mg/mL and (b) 30 mg/mL

Fig. S2 The concentration dependence of T_g in S-gel of 1 in ethanol.

Fig. S3 IR spectra of the powder from heating-cooling process and the S-xerogel (20 mg/mL).

Fig. S4 The extended structure model of molecule 1

Fig. S6 ¹³C NMR spectral of 1 in CDCl₃

Fig. S7 HR-Ms spectral of 1

Reference:

[1] M. Zhang, S. Sun, X. Cao, X. Yu, Y. Zou and T. Yi, Chem. Commun., 2010, 46, 3553.