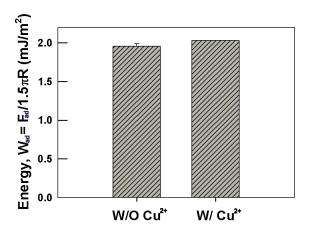
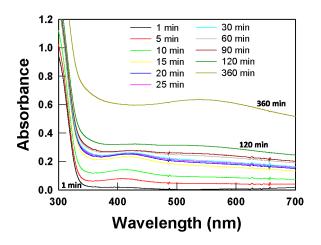
Supplementary Information


ADHESION MECHANISM IN A DOPA-DEFICIENT FOOT PROTEIN FROM GREEN MUSSELS

Dong Soo Hwang^{1,4,§,*}, Hongbo Zeng^{2,§,*}, Qingye Lu², Jacob Israelachvili^{3,4,*}, and J. Herbert Waite^{4,5,*}


¹Ocean Science and Technology Institute, Pohang University of Science and Technology, Hyoja-Dong, Nam-Gu, Pohang, Gyeongbuk, 790-784, Korea

²Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4 Canada

³Department of Chemical Engineering, ⁴Materials Research Laboratory, and ⁵Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA

Figure s1. Adhesion energy per unit area, W_{ad} , changes between two pvfp-1 coated surfaces in 0.1 M sodium acetate, 0.25 M KNO₃, pH 5.5 due to addition of 10 μ M CuCl₂. Each value and error bar represents the mean of duplicated (n=2) samples and its standard deviation.

Figure s2. UV-Vis spectrum of 7-hydroxyindole with 10 μM CuCl₂ in 0.1 M sodium acetate, 0.25 M KNO₃, pH 5.5. Addition of FeCl₃ also showed trends similar to CuCl₂.

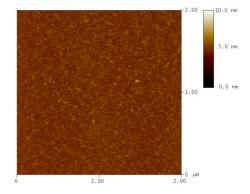
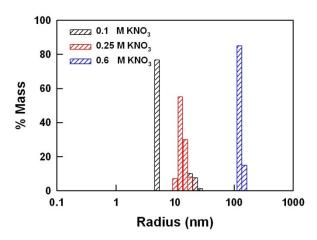



Figure s3. AFM image (tapping mode) of pvfp-1 film deposited on freshly cleaved mica.

Figure s4. Hydrodynamic radius distribution of pvfp-1 in 0.1 M acetic acid (pH 3.0) depending on salt concentration by Dynamic Light Scattering (DLS)