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I. EXPERIMENTAL APPROACH

Fluids for SPT experiments were obtained by dissolv-
ing dextran (500 kDa, Sigma) and sucrose (342 Da, Roth)
in millipore water at concentrations of about 430 mg/ml
(30% w/w) and 1500 mg/ml (60% w/w), respectively.
Rhodamine-tagged tracer beads (50 nm, Polysciences)
were added from a predissolved solution, resulting in a
typical concentration of about 2 pM. Hence, 3-5 beads
were observed in the focal plane of the microscope’s wide-
field image (80 × 80 µm2).
About 35 µl of each sample was placed between

acetone-cleaned coverslips and sealed on the edges with
highly viscous grease to prevent evaporation or adhesion
forces that would induce a flow field.
Tracking experiments were performed with a home-

built single-particle tracking setup (Fig. 1) using a novel
tracking technique [1–5]. Here we only describe the basic
concept, technical details will be presented elsewhere.
The output of an Ar/Kr-Ion laser (Innova 70C Spec-

trum, Coherent) at a wavelength of 514nm with a cir-
cular polarisation (due to a λ/4-waveplate) was used as
an excitation light source. The laser beam was directed
through a series of two perpendicularly arranged acousto
optical deflectors (AOD, DTSX-400-532, Pegasus), re-
sponsible for the generation of an orbiting laser beam
with rotation frequency f . The rotating laser beam was
then passed through a telecentric lens system and di-
rected into a home-built confocal microscope. The laser
light was reflected by a dichroic beamsplitter (z532RDC,
AHF) towards an infinity corrected water-immersion ob-
jective (UPLSAPO, 60x, NA=1.2, Olympus). The sam-
ple with the diffusing tracer particles was mounted on top
of a three-dimensional piezo stage. This setup allowed us
to create an orbit radius R in the range of 0 to 5µm
in the focal plane of the objective. Suitable dye-labeled
particles in the vicinity of the rotating focal spot were
excited. The emitted light was collected by the same
objective, passed the dicroic beamsplitter and a further
dielectric filter (HQ525LP, OD=6 @ 514nm, AHF) to
suppress remaining laser light. Finally it was focussed
either onto the chip of a CCD (sensicam qe, PCO) or
an avalanche photodiode (APD, SPCM-AQR-14, Perkin
Elmer) with a sensitive area of 180µm in diameter.
The setup was capable of working in a widefield and

a confocal operation mode. For the widefield mode an
optional lens in front of the microscope was flipped into
the optical path to defocus the excitation to an area of
about 80 × 80µm2 in the plane of the sample. In this
mode the deflection unit is set to a neutral state (no de-
flection). The diffusing particles are located within the
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FIG. 1: (a) Sketch of the experimental setup with lenses for
beam profile optimization (Lp), a widefield lense (LWF), a di-
electric filter (F), and an acousto optical deflector (AOD). Sig-
nals were collected either with a CCD camera or an avalanche
photodiode (APD). The calculation unit provided the drive
signals for the AODs, gathered the emission intensity, cal-
culated the positions x and y, and fed the negated position
to a piezo stage. (b) Representative trajectories in a purely
viscous sucrose solution (left) and a crowded dextran fluid
(right); color-coding blue to red highlights the temporal di-
rection of the trajectory. The gyration ellipsoids which reflect
the random walks’ asphericity are superimposed in grey. Due
to a higher mobility in the sucrose solution, the ellipsoids dif-
fer in size.

CCD image and are moved by the piezo stage to a proper
position near the centre of the laser orbit. The confocal
mode is subsequently used to perform the measurements.
By flipping the optional lens back, the emission is now de-
tected with the APD and the deflection unit is switched
on. The emission intensity of the moving particle is mod-
ulated with the known frequency of the laser orbit.

Using a tracking software based on a lock-in technique
[1, 3] we were able to reconstruct the two-dimensional
motion of particles from the frequency-modulated fluo-
rescence signal: From the detected photons the position
with respect to the orbit center was calculated, and the
piezo stage was fed with a signal corresponding to the
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negated position. The whole trajectory of the tracer can
be reconstructed by monitoring the feedback signal of the
piezo.
Experiments were done with an orbit frequency of f =

1 kHz. Every four periods of rotation the position was
calculated resulting in a time resolution of ∆t = 4ms.
The radius for best tracking perfomance depends on the
beam waist w of the focal spot and was found to be R =
w/

√
2 [6]. A typical width of w = 270nm lead to a radius

of R = 190nm.

II. EVALUATION WINDOW OF
EXPERIMENTAL DATA

We have chosen to evaluate the scaling properties of
the experimental data in the temporal range 50-500ms,
e.g. when inspecting the MSD. Enlarging the window in
which the anomaly α and the corresponding asphericty A
were determined will alter the stated numbers. Extend-
ing the fit range to larger times will include more of the
crossover towards the asymptotic normal diffusion and
hence α → 1 and A → 4/7. This underlines the transient
nature of the anomaly. In better words, significant elas-
tic restoring forces are only present in crowded fluids for
large frequencies, i.e. for rapid motion on short length
and time scales.
Extending the fit range to smaller times will include

particular features of the measurement process. The ac-
curacy of the position measurement in SPT depends on
the number of photons acquired. If too few photons are
detected, small diffusion steps are masked by noise and
the MSD appears to converge to a constant for t → 0
[7, 8]. This behavior may mimic a subdiffusive charac-
teristics at small times (’false positives’). In our experi-
ments photon statistics was sufficiently high to make this
effect negligible, i.e. the scaling exponent of a purely vis-
cous fluid deviated from unity only by less than 2%. But
even when having enough photon statistics and normal
diffusion, an apparently anomalous characteristics may
emerge: Since diffusion does not stop during the acquisi-
tion process (given by the acquisition time ∆t), the MSD
will take on a form ⟨r(t)2⟩ = 4D(t − ∆t/3) [9]. Due
to the subtraction of a constant, the MSD hence may
mimic a superdiffusive scaling for short times. To avoid
all these contributions, we have restricted ourselves to
the indicated fit window which is least affected by the
above mentioned processes.
From the two-dimensional trajectory with N position

and a time resolution of ∆t, we obtained the gyration
tensor via

Tij =
1

N

N∑
n=1

(ri(n∆t)− ⟨ri⟩) (rj(n∆t)− ⟨rj⟩) . (1)

Here, ⟨ri⟩ denotes the i-th component of the center of
mass. Diagonalizing Tij yields the principal axes of gyra-
tion and the corresponding eigenvalues, i.e. the squared
principal radii of gyration, R2

i .

III. SIMULATIONS

We have considered two different models for anomalous
diffusion, namely diffusion in a percolation system (ob-
structed diffusion, OD) and fractional Brownian motion
(FBM). Computer simulations of the respective process
provide numerical values for the shape parameters that
can be compared to experimental data.

Obstructed diffusion was simulated on a square lattice
(350 × 350 sites) with periodic boundary conditions. A
fixed fraction f of randomly chosen sites were occupied
by static obstacles and tracer particles were allowed to
move on the remaining free sites according to the blind
ant algorithm (see, e.g. [10]). Depending on the occupied
volume fraction f , the support becomes a fractal [11], and
diffusion can become (transiently) anomalous. For a crit-
ical concentration of obstacles fp = 0.40726 [12], the per-
colation threshold in two dimensions, subdiffusion with
α ≈ 0.69 is observed on all time scales whereas for f < fp
a transient, yet long-lasting subdiffusion with a finite-size
corrected anomaly α emerges. Indeed, for f < fp normal
diffusion is asymptotically restored. For f > fp, tracers
are confined to finite domains, i.e. an initial subdiffusion
is observed but asymptotically the particle is bound to a
certain region in space. In our simulations, we varied the
occupied volume fraction in the range 0.33 ≤ f ≤ 0.42
which resulted in straight power laws of the particles’
MSD within the simulation period. For every value of
f , we simulated 1.5× 106 random walks, where for every
1000th run a new environment was created. Each ran-
dom walk was started at a randomly chosen vacant site.
Occasionally, particles were trapped in a small subvolume
of the lattice due to the random placement of obstacles.
We identified such situations and removed trapped tra-
jectories from the analysis.

For the simulation of FBM we used the circulant
method [13] which is in principle exact, i.e. the devia-
tions between ’true’and simulated FBM are due to com-
putational limitations like finite numerical accuracy. The
method relies on the embedding of the covariance matrix
of FBM into a circulant matrix that is diagonalized by
a discrete Fourier transform. Using a fast Fourier trans-
form (FFT), the simulation time for a trajectory of length
N scales as N logN . We generated 106 independent tra-
jectories, each having N = 213 positions. The anomaly
was varied in the range 0.5 ≤ α ≤ 0.9. For normal dif-
fusion (α = 1), we relied on Brownian Dynamics simu-
lations [14] that are based on the overdamped Langevin
equation, r(t+∆t) = r(t)+ξ(∆t) with ξ being a random
variable with white noise characteristics.

IV. RESULTS ON A TRUNCATED CTRW
MODEL

To overcome the somewhat artificial features of the
CTRW model due to its asymptotic scaling of the dis-
tribution of waiting times, p(τ) ∼ 1/τ1+α, we have con-
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FIG. 2: (a) Representative time-averaged MSD of truncated
CTRW model (α = 0.8), shown as D(t) = ⟨r(t)2⟩/t to
highlight the asymptotic scaling. Data for the time- and
ensemble-averaged MSD are shown in blue and red, respec-
tively. For the ensemble-averaged quantity a transient scal-
ing D(t) ∼ 1/t0.2 in the experimentally relevant interval is
observed before asymptotically reaching the normal diffusion
limit (D → const.). Hence, the truncated CTRW model only
shows transiently a weak ergodicity breaking. (b) The proba-
bility distribution function of waiting times, p(τ) used for the
truncated CTRW model. After a transient power-law scaling,
the distribution displays an exponential tail that enforces an
asymtotic convergence of the MSD to normal diffusion. (c)
The asphericity of the truncated CTRW model for α = 0.8
(red dot) deviates considerably from the predictions of the OD
and FBM models (dashed lines). It is most consistent with
the limiting value A = 4/7 for normal diffusion and hence
incompatible with the experimental data found for a crowded
dextran solution.

structed a truncated CTRW model. In particular, we
followed previous reports that had implied exponentially
truncated power-law distributions [15]. A truncated p(τ)
is expected to yield a long-lasting transient subdiffusion
which asymptotically converges to normal diffusion.

We therefore have simulated a two-dimensional CTRW
with α = 0.8 and a truncated distribution of waiting
times with parameters that yielded a close match with
the experimental MSD data. The chosen waiting time
distribution and the resulting behavior of the MSD (again
shown as D(t) = ⟨r(t)2⟩/t) are reported in Fig. 2. As
can be seen in Fig. 2a, the time-averaged D(t) is approxi-
mately constant whereas the ensemble-averaged quantity
shows a transient scaling ∼ 1/t0.2 (i.e. ⟨r(t)2⟩E ∼ t0.8)
before converging to the asymptotic limit of normal dif-
fusion. Hence, the CTRW’s feature of a linear scaling of
the time-averaged MSD persists even for the truncated
model. The associated wating time distribution (Fig. 2b)
shows a power-law decay over several orders of magnitude
before being exponentially truncated.

We next determined the asphericity for the truncated
CTRW model. Since the trajectory of a CTRW at any
instance of time geometrically looks like the path of nor-
mal Brownian motion, we expected a value A ≈ 4/7
for the truncated CTRW model. Indeed, our expecta-
tion turned out to be correct (Fig. 2c). Furthermore, A
did not change significantly with the imposed anomaly
α (data not shown). Shifting the truncation to larger
and larger times resulted in a slight increase of A rather
than reducing the value. Therefore, based on the scal-
ing of ⟨r(t)2⟩T and the asphericity, we can not only rule
out OD and the full CTRW model but also a (truncated)
CTRW model as an explanation of the experimentally
observed anomalous diffusion.
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