Supplemental Information for manuscript:

Self-assembly mechanisms of the silk protein sericin on two-dimensional surfaces

Nicholas E. Kurland[§], Joydip Kundu[¶], Shilpa Pal, Subhas C. Kundu[¶], Vamsi K. Yadavalli^{§,*}

[¶] – Department of Biotechnology

Indian Institute of Technology, Kharagpur 721302, India

[§] – Department of Chemical and Life Science Engineering

Virginia Commonwealth University, Richmond VA 23284, USA

* - Corresponding author: Phone: 1-804-828-0587 Fax: 1-804-828-3846

Email: vyadavalli@vcu.edu (Vamsi K.Yadavalli)

Gel electrophoresis:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to determine species molecular weight. Along with 10 μ L of SeeBlue protein standard, 10 μ L mixtures of 5 μ g of sericin, mixed with 5 μ L 2x Novex Tricine SDS sample buffer (Invitrogen, Carlsbad, CA) were loaded into wells of a 5% stacking gel cast on top of a 8% polyacrylamide gel. The gel was run at 150 V for approximately 90 minutes and stained with MagicBlue rapid protein stain.

Figure S1: SDS PAGE (8%) gel pictures of 0.1% sericin solutions isolated from cocoons of different species: M- Molecular weight marker, 1- *B. mori* sericin, 2- *A. mylitta* sericin, 3- *A. assamensis* sericin.

Dynamic Light Scattering (DLS) Data:

Particle size distribution and zeta potentials for the sericin samples were obtained using a Malvern Zetasizer Nano ZS90 (Malvern Instruments Ltd., Worcestershire, UK), at 20.0°C over 100 scans.

Figure S2: Particle size data for sericin from the different species as determined by DLS. (A) *B. mori*. (B) Wako sericin (*B. mori* commercial source). (C) *A. mylitta*. (D) *A. assamensis*.

High resolution images of self-assembly of *B. mori:*

Figure S3: (A) Low- and (B) high-magnification SEM images of *B. mori* DLA architecture.

High resolution images of self-assembly of Anthereae mylitta:

Figure S4: (A) Low- and (B) high-magnification SEM images of *A. mylitta* DLA architecture.

High resolution images of self-assembly of A. assamensis:

Figure S5: High-resolution optical micrograph of *A. assamensis*, showing single aggregates.

Figure S6: AFM images of (A) radially-branched features observed in Figure S5, and (B) aggregates observed at the contact line of the solvent-Si interface.

Figure S7: (A) Low- and (B) high-magnification SEM of *A. assamensis*, with nanorods visible at branch tips in (B).

Figure S8: Circular Dichroism (CD) to estimate secondary structure of the protein samples investigated.(A) Bombyx Mori (B)

Sericin Sample	a Helix	β Sheet	βTurn	Random Coil
	(%)	(%)	(%)	(%)
B. mori	2.3	43.6	22.3	32.4
Wako sericin	0	48.1	23.6	31.2
A. mylitta	1.9	48.8	23.9	29.3
A. assamensis	1.7	44.7	22.3	33.3

Table S1: Tabulated results from DichroWeb's SELCON3 secondary structure analysis at 178-260 nm.