[Electronic Supplementary Information]

A tetrazole-based metallogel induced with Ag⁺ ion and its silver nanoparticle as catalysis

Ji Ha Lee,[†] Sunwoo Kang,[‡] Jin Yong Lee^{*,‡} and Jong Hwa Jung^{*,†}

[†]Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University, Jinju 660-701, Korea

[‡]Department of Chemistry and Institute of Basic Science Sungkyunkwan University, Suwon

440-746, Korea

E-mail: jinylee@skku.edu; jonghwa@gnu.ac.kr

Fig. S1 Photograph of ligand **1** (1.0 wt) with (a) $AgSO_4$ (2.0 equivalent), (b) AgOAc (2.0 equivalent), (c) $AgClO_4$ (2.0 equivalent) and (d) $AgNO_3$ (2.0 equivalent) at pH=10 in water.

Fig. S2 SEM image of gel 1 (1.0 wt%) with $AgNO_3$ (2.0 equiv) in water.

Fig. S3 (A) High resolution and (B) enlarged TEM images of Ag nanoparticles onto the gel 1.

Fig. S4 EDX spectrum of gel 1 with AgClO₄ (2.0 equivalent).

Fig. S5 Fluorescence spectra of (a) free ligand 1 and gel 1 with $AgClO_4$ (b) at initial stage and (c) after 1 day.

Fig. S6 Job's plot of **1** by addition of Ag^+ in H_2O .

Fig. S7 FT-IR spectra of (a) free ligand 1, and gel 1 with (b) 2.0, (c) 3.0 and (d) 4.0 equivalents of AgClO₄.

Fig. S8 DSC data of gel 1 with AgClO4 (2.0 equiv).

Fig. S9 Frequency sweep of G' and G" for gel **1** with $AgClO_4$ (a) 2 equiv, (b) 3 equiv and (c) 5.0 equiv at a strain of 0.1 %.

Fig. S10 Strain sweep G' and G" at a frequency of 1 rads⁻¹ for gel 1 with AgClO₄ (a) 2.0 equiv,
(b) 3.0 equiv, and (c) 5.0 equiv at a strain of 0.01.