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1. Mesoscopic model for non-ideal fluids and interfacial phenomena  

 

The mesoscopic description based on Eq.(8) employs the BGK ansatz to model the macroscopic effect 

of short-range fluid-fluid interactions. Non-ideal fluid behavior (e.g. non-ideal equation of state, phase 

separation) and interfacial effects (e.g. surface tension, disjoining pressure, partial wetting), are modeled 

by an approximation of the actual force term fmtf vg  // in the kinetic transport equation. 

Among the different possible approximations
1-3

 we adopted the so-called difference method
3
 

),,(),(/ * uu  eqeq fftf   where the equilibrium distribution is computed using a “shifted” 

velocity u*=u+tg.  

For the employed class of LB models the volumetric body force g is obtained as a spatial 

convolution
4
: 
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of the mean-field pseudo potentials (x,t) with a heuristic kernel w(|r|). It is convenient to adopt a 

Gaussian kernel w(|r|)=(2)
-2/D

exp(-|r|
2
/(2) where the length scale determines the decay of pair 

correlations due to thermal effects and thus the thickness of the liquid-vapor interface. In all presented 

results, =1. 

The volumetric body force FSFF FFg  thus contains a Fluid-Fluid (FF) component: 
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and Fluid-Solid (FS) contribution 
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The last term models short-range interactions (i.e. elastic collisions, Pauli repulsion) causing a local 

shift in fluid velocity Uwall=Uwall-u-FFFt. The wall function S(x) takes finite values 0≤S ≤1 

vanishing (S=0) at certain distance from the wall. The wall function S(x) allows an effective control of 

the slip at the wall as described in
4
. 

The fluid-solid interactions receive similar treatment to cross-interactions between two components in. 

The vectors, ri, and weights, wi, for the particular lattice employed (D=2 and Q=21)
4
 are reported in 

Table 1. 

Table 1: Model Parameters D2Q21 

vi,ri
a 

states wi 

(±1,0),(0, ±1) 1-4 1/12 

(±1, ±1) 5-8 2/27 

(±2,0),(0, ±2) 9-12 7/360 

(±2, ±2) 13-16 1/432 

(±3,0),(0, ±3) 17-20 1/1620 

(0,0) 21 91/234 
a 
lattice units; =kBT/m=2/3 

 

Fluid-Fluid interactions are defined according to: 

 ),(2),(  EoSFF pt x ,           (SI.4) 

where pEoS is given by the following equation of state (EoS): 
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The parameters employed in this work are: V=0.64, M=-0.1225L=1.0, V=0.1, =0.12823, 
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=0.92096 and L=1.0. This parameter combination sets two-phase thermodynamic equilibrium at a 

density ratio L/V=10, which results in a compressibility ratio =LL /VV=15.625. Hence, the 

adopted EoS models a volatile liquid that coexists with significantly less dense (and more compressible) 

vapor phase while both phases exhibit ideal fluid behavior (i.e. p ). 

A proper choice of the functional form of FS can model a disjoining pressure acting within a distance 

h from the solid-liquid interface (e.g. h~100nm for many systems of interest). In analogy with DLVO 

theory, the wall potential )()(),( xxx AARRFS GGt    has a repulsive component GRR and an 

attractive component GAA.  

The wall function (S) and pseudo-potentials components (R, A) are obtained using a recursive 

Gaussian filter
4
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that smooths the step function H(x) defining the solid geometry (H=1 within the solid and H=0 in the 

fluid nodes). For the simulations in this work we use R= )()5(
xG , A= )(5.0)( )5()22( xx GG  , 

andS= )()22(
xG .  

The repulsive parameter employed in this work is GR=/2 while the attractive parameter GA takes 

values within the interval [-1,0]. The static contact angle Y in the present LB simulation is a function of 

GA as reported below. 

2. Determination of Young’s contact angle 

 

The Young’s contact angle Y in the LB simulation is determined by the dynamics of fluid-solid and 

fluid-fluid interactions. Once the EoS and repulsive parameter are fixed, Y becomes a function of the 

attraction parameter GA. To obtain the correlation Y =Y(GA), we perform a series of computations for 
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the equilibrium of a small droplet wetting a planar surface when gravity is ignored.  

The liquid/gas interface is considered as the locus of points with a density =(L+G)/2, where L and 

G the coexistence densities of the liquid and gas phase respectively. We numerically fit a circle to the 

simulated interface; the contact angle is defined from the slope of the fitting circle at a level (depicted in 

Figure S1(a) with a black line), beyond which the fluid-solid interactions are of negligible magnitude 
4
. 

The dependence of the computed Y on GA is presented in Figure S1(b). 

 
 

 

 

(a) 
 

(b) 

Figure S1. (a) Circular fitting of the liquid/gas interface of a droplet at equilibrium. (b) Contact angle 

(Y) versus attraction parameter (GA) for a two-dimensional droplet wetting horizontal solid surfaces. 

3. Timestepper based GMRES implementation 

 

Depending on the task to be performed (e.g. steady state computation, bifurcation analysis, etc.), 

different algorithms (e.g. Newton-Raphson, pseudo arc-length continuation) for numerical analysis can 

estimate ‘on demand’ the required quantities by performing properly initialized calls to the time-

stepper
5-7

. In the case of steady-state computations, the sought solution U
*
, satisfies the relation: 

  0UUR **  T
.            (SI.7)  

The solution of (SI.7) is obtained with an iterative Newton-Raphson method in which each iteration 

step requires the solution of a linearized system 
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 
)(URU

U

U





T .             (SI.8) 

The guess U for the steady-state solution is iteratively updated through U → U+U until an adopted 

convergence criterion is satisfied. The computation of the Jacobian matrix 
 

U

U



 T   and the residual R 

do not require knowledge of the explicit formulation of the equations to be solved. Their values can be 

estimated by calling the time-stepper at appropriately perturbed values of the corresponding unknowns. 

This approach is computationally inefficient for large systems since the estimation of the Jacobian 

matrix involves the repeated simulation of the time-stepper described by (SI.7) for perturbations in each 

of the state space directions. Alternatively, one can use  matrix-free iterative solvers for the (SI.8) 

system, e.g. the Generalized Minimal Residual Solver (GMRES)
8, 9

, which overcomes this inefficiency 

given that its algorithmic implementation requires low-cost computation of matrix-vector 

products
 

q
U

U



 T . The set of vectors q (q is the orthonormal basis of the Krylov subspace, K=span{b, 

Ab, A
2
b, A

3
b, .... }, with 

 
U

U
A




 T , b=-R), is used to approximate the solution of the linearized 

system of equations. By calling the time-stepper from nearby initial conditions one estimates the action 

of the linearized map 
 

U

U



 T  on known vectors q, since: 

     


 UqU
q

U

U TTT 





,           (SI.9) 

where  is a small and appropriately chosen scalar (e.g.   qqqU ,/,10 7 8
). 

4. Timestepper based stability analysis 

 

The stability of a computed steady-state solution, U
*
, is determined by solving the linearized 

eigenvalue problem, 
 

eigeig
T uu
U

U





*

*

, where  is an eigenvalue and ueig its corresponding 
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eigenvector. Matrix-free eigensolvers
10

 are employed to compute the leading eigenvalues of the 

Jacobian matrix, 
 

*

*

U

U



 T . As in illustration, we present the 20 leading eigenvalues of two wetting 

states corresponding to a Young angle, Y=110
o
, in the vicinity of the rightmost turning point CLB (see 

Figure 3). The solution corresponding to the lower branch is stable with its largest eigenvalue at 

max≈0.91. All the eigenvalues reside within the unit circle on the complex plane and the solution is 

dynamically stable. On the other hand, the solution on the intermediate branch is unstable, since the 

largest eigenvalue of the Jacobian matrix ismax≈1.52.  

 

(a) 

 

(b) 

Figure S2. 20 leading eigenvalues of the Jacobian matrix for two wetting states, in the vicinity of the 

rightmost turning point C. (a) Stable steady-state (branch (III)): all eigenvalues lie within the unit circle 

on the complex plane. (b) Unstable steady-state (branch (II)): the largest eigenvalue of the Jacobian 

matrix exceeds unity. 
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